Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (1) : 122-129     https://doi.org/10.1016/J.ENG.2017.01.004
Research |
高速动车组列车控制与监视系统设计及全寿命周期管理技术研究
赵红卫1(),黄志平2,梅樱2
1. China Academy of Railway Sciences, Beijing 100081, China
2. Beijing Zongheng Electro-Mechanical Technology Development Co., Beijing 100094, China
全文: PDF(3997 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

本文介绍了高速动车组的生命周期——设计、制造、测试、运营和维护阶段,以及各种平台,包括列车控制与监视系统(TCMS) 开发平台、测试和验证平台、动车组(EMU) 驾驶仿真平台及远程数据传输和维护平台。所有平台构成了EMU 全寿命周期系统并绑定在一起。每个平台都有利于EMU 全寿命周期管理且成为EMU 全寿命周期管理的重要组成部分。

关键词 动车组(EMU)列车控制与监视系统(TCMS)列车控制网络全寿命周期成本开发平台测试台仿真远程数据传输    
Abstract

This paper introduces the high-speed electrical multiple unit (EMU) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.

Keywords Electrical multiple unit      Train control and monitoring system      Train communication network      Life cycle cost      Development platform      Testing bench      Simulation      Remote data transmittal     
基金资助: 
通讯作者: 赵红卫     E-mail: zhaohongwei@rails.cn
最新录用日期:    在线预览日期:    发布日期: 2017-03-02
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Hongwei Zhao
Zhiping Huang
Ying Mei
引用本文:   
Hongwei Zhao,Zhiping Huang,Ying Mei. High-Speed EMU TCMS Design and LCC Technology Research[J]. Engineering, 2017, 3(1): 122-129.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.01.004     OR     http://engineering.org.cn/EN/Y2017/V3/I1/122
Fig.1  The TCMS software development platform structure. MVB: multifunction vehicle bus; WTB: wired train bus; TCN: train communication network.
Fig.2  The TCMS software development platform. (a) The communication interface of the hardware configuration tool; (b) the online monitoring tool; (c) the interface of the TCMS software development platform.
Fig.3  The TCMS half-physical testing bench structure. CAB: cab cabinet; ATP: auto speed protection.
Fig.4  The TCMS half-physical testing bench. (a) The driver control panel; (b) the simulation main control center; (c) the vehicle cabinets and the signal-processing cabinets; (d) HIL test.
Fig.5  The EMU driving simulation platform structure. MCB: main circuit breaker; CCTV: closed-circuit television.
Fig.6  The EMU driving simulation platform. (a) The train operation route design; (b) the train front view simulation; (c) the whole driving simulation platform; (d) the driver operation console.
Fig.7  The EMU remote data transmittal and maintenance platform structure.
Fig.8  The web-browser function of EMU faults statistical analysis.
1 Zhao H, Mei Y. EMU TCMS digital design and validation platform technical report. Beijing: China Academy of Railway Sciences; 2015 May. Project No. 2013DFA82220. Chinese.
2 Zhao H, Wang L, Zhu G. High-speed train network control system half-physical platform technical report. Beijing: China Academy of Railway Sciences; 2010 Jun. Report No.: TY2861. Chinese.
3 Zhao H, Xie B, Xia F, Zheng X, Gao F. Research report on fault oriented safety control and integrated testing and simulation technology for traction system of high speed train. Railway Technical Innovation 2015;(2):31–9. Chinese.
4 Wang H, Huang Z, Hu H, Wang L. High-speed train remote diagnosis maintenance mode research. China Rail 2012;(4):41–4. Chinese.
5 Lu X, Zhao H, Huang Z, Gao F. High-speed train running safety monitoring technology. Rail Locomot Car 2011;(2):34–7. Chinese.
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343-351.
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336-342.
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421-429.
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300-.
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306-308.
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299-.
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381-391.
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309-310.
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352-360.
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371-380.
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392-397.
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311-320.
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398-405.
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330-335.
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering