Please wait a minute...
投稿  |   English  | 
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (1) : 122-129
Research |
1. China Academy of Railway Sciences, Beijing 100081, China
2. Beijing Zongheng Electro-Mechanical Technology Development Co., Beijing 100094, China
全文: PDF(3997 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息

本文介绍了高速动车组的生命周期——设计、制造、测试、运营和维护阶段,以及各种平台,包括列车控制与监视系统(TCMS) 开发平台、测试和验证平台、动车组(EMU) 驾驶仿真平台及远程数据传输和维护平台。所有平台构成了EMU 全寿命周期系统并绑定在一起。每个平台都有利于EMU 全寿命周期管理且成为EMU 全寿命周期管理的重要组成部分。

关键词 动车组(EMU)列车控制与监视系统(TCMS)列车控制网络全寿命周期成本开发平台测试台仿真远程数据传输    

This paper introduces the high-speed electrical multiple unit (EMU) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.

Keywords Electrical multiple unit      Train control and monitoring system      Train communication network      Life cycle cost      Development platform      Testing bench      Simulation      Remote data transmittal     
通讯作者: 赵红卫     E-mail:
最新录用日期:    在线预览日期:    发布日期: 2017-03-02
Hongwei Zhao
Zhiping Huang
Ying Mei
Hongwei Zhao,Zhiping Huang,Ying Mei. High-Speed EMU TCMS Design and LCC Technology Research[J]. Engineering, 2017, 3(1): 122-129.
网址:     OR
Fig.1  The TCMS software development platform structure. MVB: multifunction vehicle bus; WTB: wired train bus; TCN: train communication network.
Fig.2  The TCMS software development platform. (a) The communication interface of the hardware configuration tool; (b) the online monitoring tool; (c) the interface of the TCMS software development platform.
Fig.3  The TCMS half-physical testing bench structure. CAB: cab cabinet; ATP: auto speed protection.
Fig.4  The TCMS half-physical testing bench. (a) The driver control panel; (b) the simulation main control center; (c) the vehicle cabinets and the signal-processing cabinets; (d) HIL test.
Fig.5  The EMU driving simulation platform structure. MCB: main circuit breaker; CCTV: closed-circuit television.
Fig.6  The EMU driving simulation platform. (a) The train operation route design; (b) the train front view simulation; (c) the whole driving simulation platform; (d) the driver operation console.
Fig.7  The EMU remote data transmittal and maintenance platform structure.
Fig.8  The web-browser function of EMU faults statistical analysis.
1 Zhao H, Mei Y. EMU TCMS digital design and validation platform technical report. Beijing: China Academy of Railway Sciences; 2015 May. Project No. 2013DFA82220. Chinese.
2 Zhao H, Wang L, Zhu G. High-speed train network control system half-physical platform technical report. Beijing: China Academy of Railway Sciences; 2010 Jun. Report No.: TY2861. Chinese.
3 Zhao H, Xie B, Xia F, Zheng X, Gao F. Research report on fault oriented safety control and integrated testing and simulation technology for traction system of high speed train. Railway Technical Innovation 2015;(2):31–9. Chinese.
4 Wang H, Huang Z, Hu H, Wang L. High-speed train remote diagnosis maintenance mode research. China Rail 2012;(4):41–4. Chinese.
5 Lu X, Zhao H, Huang Z, Gao F. High-speed train running safety monitoring technology. Rail Locomot Car 2011;(2):34–7. Chinese.
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585-.
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583-584.
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578-579.
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580-582.
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467-476.
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552-558.
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434-435.
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445-451.
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281-282.
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379-384.
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416-422.
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423-427.
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393-401.
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285-289.
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365-378.
Full text



国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
您是网站的第 位访客,今日访问量 京ICP备11030251号-2