Please wait a minute...
投稿  |   English  | 
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (1) : 55-59
Research |
Pistone Alessandro1(),Iannazzo Daniela1,Espro Claudia1,Galvagno Signorino1,Tampieri Anna2,Montesi Monica2,Panseri Silvia2,Sandri Monica2
1. Department of Engineering, University of Messina, Messina 98166, Italy
2. Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy
全文: PDF(1209 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息

干细胞归巢,即间充质干细胞定向趋化募集至损伤处,对体内骨再生起重要作用。本文以人纤连蛋白片段III1-C(FF III1-C) 及纤连蛋白类似物的肽序列Gly-Arg-Gly-Asp-Ser-Pro-Lys 作为趋化因子,分别共价结合至掺镁羟基磷灰石中,用于研究模拟肽序列接枝的掺镁羟基磷灰石对间充质细胞归巢的调控作用。用于检测间充质干细胞活力的MTT 法初步研究发现释放趋化信号的掺镁羟基磷灰石可有效促进干细胞迁移。

关键词 掺镁羟基磷灰石间充质干细胞趋化/ 趋触因子骨组织工程    

Stem cell homing, namely the recruitment of mesenchymal stem cells (MSCs) to injured tissues, is highly effective for bone regeneration in vivo. In order to explore whether the incorporation of mimetic peptide sequences on magnesium-doped (Mg-doped) hydroxyapatite (HA) may regulate the homing of MSCs, and thus induce cell migration to a specific site, we covalently functionalized MgHA disks with two chemotactic/haptotactic factors: either the fibronectin fragment III1-C human (FF III1-C), or the peptide sequence Gly-Arg-Gly-Asp-Ser-Pro-Lys, a fibronectin analog that is able to bind to integrin transmembrane receptors. Preliminary biological evaluation of MSC viability, analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, suggested that stem cells migrate to the MgHA disks in response to the grafted haptotaxis stimuli.

Keywords Mg-doped hydroxyapatite      Mesenchymal stem cells      Chemotactic/haptotactic factors      Bone tissue engineering     
通讯作者: Pistone Alessandro     E-mail:
最新录用日期:    在线预览日期:    发布日期: 2017-03-02
Alessandro Pistone
Daniela Iannazzo
Claudia Espro
Signorino Galvagno
Anna Tampieri
Monica Montesi
Silvia Panseri
Monica Sandri
Alessandro Pistone,Daniela Iannazzo,Claudia Espro, et al. Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys Peptides on Mg-Doped Hydroxyapatite[J]. Engineering, 2017, 3(1): 55-59.
网址:     OR
Fig.1  Scheme of the synthesis of MgHA-APTES disks. RT: room temperature.
Fig.2  XRD spectra of MgHA and MgHA-APTES disks.
Fig.3  SEM images of (a) MgHA and (b) MgHA-APTES samples.
Fig.4  TEM images of (a) MgHA and (b) MgHA-APTES samples.
Fig.5  Scheme of the synthesis of MgHA-APTES-CFP and MgHA-APTES-CFF. Reagents and conditions: Gly-Arg-Gly-Asp-Ser-Pro-Lys or FF III1-C, EDC×HCl, NHS, PBS, 3 h, 37 °C.
Fig.6  TGA profiles of MgHA, MgHA-APTES, MgHA-APTES-CFP100, and MgHA-APTES-CFF100 samples.
Fig.7  FTIR spectra of MgHA, MgHA-APTES, and MgHA-APTES-CFF100.
Fig.8  MTT test of mMSC, 3 days after the seeding into the inserts placed in direct contact with the disks. Cells-only group used as a control.
1 Laurencin CT, Khan Y. Regenerative Engineering. Sci Transl Med? 2012;4(160):160ed9
2 Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng? 2012;40(5):363–408 pmid: 23339648
3 Dawson JI, Kanczler J, Tare R, Kassem M, Oreffo RO. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies—where are we now? Stem Cells 2014;32(1):35–44 pmid: 24115290
4 Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2014;2:14017 pmid: 26273526
5 Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res 2015;3:15029 pmid: 26558141
6 Iannazzo D, Pistone A, Espro C, Galvagno S. Drug delivery strategies for bone tissue regeneration. In: Panseri S, Taraballi F, Cunha C, editors Biomimetic approaches for tissue healing. Foster City: OMICS Group eBooks; 2015. p. 1–39.
7 Panseri S, Cunha C, D’Alessandro T, Sandri M, Russo A, Giavaresi G, et al. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect. PLoS One 2012;7(6):e38710 pmid: 22685602
8 Cunha C, Panseri S, Iannazzo D, Piperno A, Pistone A, Fazio M, et al. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications. Nanotechnology 2012;23(46):465102 pmid: 23093179
9 Wang DX, He Y, Bi L, Qu ZH, Zou JW, Pan Z, et al. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomedicine 2013;8: 1855–65 pmid: 23690683
10 Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 2005;8(3):131–6 pmid: 16235028
11 Bellucci D, Sola A, Gazzarri M, Chiellini F, Cannillo V. A new hydroxyapatite-based biocomposite for bone replacement. Mater Sci Eng C Mater Biol Appl 2013;33(3):1091–101 pmid: 23827547
12 Pistone A, Iannazzo D, Panseri S, Montesi M, Tampieri A, Galvagno S. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering. Nanotechnology 2014;25(42):425701 pmid: 25265364
13 Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, et al. Magnesium incorporation into hydroxyapatite. Biomaterials 2011;32(7):1826–37 pmid: 21144581
14 Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 2008;19(1):239–47 pmid: 17597369
15 Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Int 2014;2014:921905
16 Schantz JT, Chim H, Whiteman M. Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Eng 2007;13(11):2615–24 pmid: 17961003
17 Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 2012;64(12):1292–309 pmid: 22342771
18 García AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 2005;84(5):407–13 pmid: 15840774
19 Yun YR, Pham BH, Yoo YR, Lee S, Kim HW, Jang JH. Engineering of self-assembled fibronectin matrix protein and its effects on mesenchymal stem cells. Int J Mol Sci 2015;16(8):19645–56 pmid: 26295389
20 Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 1997;69(2):581–93 pmid: 9231715
[1] Jorge L. Escobar Ivirico, Maumita Bhattacharjee, Emmanuel Kuyinu, Lakshmi S. Nair, Cato T. Laurencin. Regenerative Engineering for Knee Osteoarthritis Treatment: Biomaterials and Cell-Based Technologies[J]. Engineering, 2017, 3(1): 16-27.
[2] Yu Liu, Guangdong Zhou, Yilin Cao. Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions[J]. Engineering, 2017, 3(1): 28-35.
Full text



国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社