Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (1) : 71-82     https://doi.org/10.1016/J.ENG.2017.01.008
Research |
人体微生态与健康
王保红,姚铭飞,吕龙贤,凌宗欣,李兰娟()
National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
全文: PDF(1171 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

数以万亿计的微生物寄生于人体表面和体内,并与人类起演变多种环境因素可影响胃肠道微生的平衡,这些改变与人体健康和疾病密切相关本文重点关注人体微生与宿主之间的相互作用,总体概括微生物在人体基本生命过程中以及主要疾病中起的作用,如感染性疾病肝脏疾病胃肠道肿瘤、代谢疾病呼吸系统疾病精神或心理疾病和自身免疫疾病等。我们还综述了微生物研究相关术的重要进展,如DNA 测序、代谢组学和基于计算生物信息学的蛋白质组学目前对人类微生态的研究已经更加复杂和全面建议研究应更多关注–宿主微生物的相互作用和因果关系,这有助于我们更好地了解肠道微生物在人类健康和疾病中的作用,并为临床实践提供新的治疗靶点和方法。

关键词 微生物健康传染病肝病胃肠道恶性肿瘤代谢紊乱微生物技术益生菌    
Abstract

Trillions of microbes have evolved with and continue to live on and within human beings. A variety of environmental factors can affect intestinal microbial imbalance, which has a close relationship with human health and disease. Here, we focus on the interactions between the human microbiota and the host in order to provide an overview of the microbial role in basic biological processes and in the development and progression of major human diseases such as infectious diseases, liver diseases, gastrointestinal cancers, metabolic diseases, respiratory diseases, mental or psychological diseases, and autoimmune diseases. We also review important advances in techniques associated with microbial research, such as DNA sequencing, metabonomics, and proteomics combined with computation-based bioinformatics. Current research on the human microbiota has become much more sophisticated and more comprehensive. Therefore, we propose that research should focus on the host-microbe interaction and on cause-effect mechanisms, which could pave the way to an understanding of the role of gut microbiota in health and disease. and provide new therapeutic targets and treatment approaches in clinical practice.

Keywords Microbiome      Health      Infectious disease      Liver diseases      Gastrointestinal malignancy      Metabolic disorder      Microbiota technology      Probiotics     
基金资助: 
通讯作者: 李兰娟     E-mail: ljli@zju.edu.cn
最新录用日期:    在线预览日期:    发布日期: 2017-03-02
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Baohong Wang
Mingfei Yao
Longxian Lv
Zongxin Ling
Lanjuan Li
引用本文:   
Baohong Wang,Mingfei Yao,Longxian Lv, et al. The Human Microbiota in Health and Disease[J]. Engineering, 2017, 3(1): 71-82.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.01.008     OR     http://engineering.org.cn/EN/Y2017/V3/I1/71
Fig.1  Human microbial symbiosis has a close relationship with diseases of different systems.
Fig.2  Infectious diseases have a profound impact on the human microbiota. The wide use of antibiotics, immunosuppressive drugs, and other new treatment technologies for infectious diseases such as frequently emerging infectious diseases, HIV infection, and CDI has a profound impact on the human microbiota, which in turn determines the outcome of the infectious disease in the human host.
Fig.3  Our hypothetical pathway for the role of gut microbiota dysbiosis in liver diseases. Evidence shows that chronic liver disease is usually accompanied by intestinal dysbiosis, which is characterized by the increase of Enterobacteriaceae and the decrease of Bifidobacterium; this can lead to BT, then to endotoxemia and even spontaneous bacterial peritonitis (SBP), and finally to progression of the liver disease. Importantly, the maintenance of the normal microbial community by means of probiotics/prebiotics could greatly improve the prevention and treatment effect of liver disease.
1 O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7(7):688–93
https://doi.org/10.1038/sj.embor.7400731
2 Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, Vanamala J, et al. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 2014;146(6):1470–6
https://doi.org/10.1053/j.gastro.2014.03.001
3 Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 1998;95(12):6578–83
https://doi.org/10.1073/pnas.95.12.6578
4 Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 1977;31(1):107–33
https://doi.org/10.1146/annurev.mi.31.100177.000543
5 Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124(4):837–48
https://doi.org/10.1016/j.cell.2006.02.017
6 Wang B, Li L. Who determines the outcomes of HBV exposure? Trends Microbiol 2015;23(6):328–29
https://doi.org/10.1016/j.tim.2015.04.001
7 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444(7122):1022–3
https://doi.org/10.1038/4441022a
8 Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, et al. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 2016;6:32002
https://doi.org/10.1038/srep32002
9 Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006;312(5778):1355–9
https://doi.org/10.1126/science.1124234
10 Roberfroid MB, Bornet F, Bouley C, Cummings JH. Colonic microflora: nutrition and health. Summary and conclusions of an International Life Sciences Institute (ILSI) [Europe] workshop held in Barcelona, Spain. Nutr Rev 1995;53(5):127–30
https://doi.org/10.1111/j.1753-4887.1995.tb01535.x
11 Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006;313(5790):1126–30
https://doi.org/10.1126/science.1127119
12 Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003;4(3):269–73
https://doi.org/10.1038/ni888
13 Schauber J, Svanholm C, Termén S, Iffland K, Menzel T, Scheppach W, et al. Expression of the cathelicidin LL-37 is modulated by short chain fatty acids in colonocytes: relevance of signalling pathways. Gut 2003;52(5):735–41
https://doi.org/10.1136/gut.52.5.735
14 Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 2008;456(7221):507–10
https://doi.org/10.1038/nature07450
15 Rakoff-Nahoum S, Medzhitov R. Innate immune recognition of the indigenous microbial flora. Mucosal Immunol 2008;1(Suppl 1):S10–4
https://doi.org/10.1038/mi.2008.49
16 Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004;4(6):478–85
https://doi.org/10.1038/nri1373
17 Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010;90(3):859–904
https://doi.org/10.1152/physrev.00045.2009
18 Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology 2008;134(2):577–94
https://doi.org/10.1053/j.gastro.2007.11.059
19 Liu Q, Duan Z, Ha D, Bengmark S, Kurtovic J, Riordan SM. Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 2004;39(5):1441–9
https://doi.org/10.1002/hep.20194
20 Scanlan PD, Shanaha n F, Clune Y, Collins JK, O’Sullivan GC, O’Riordan M, et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 2008;10(3):789–98
https://doi.org/10.1111/j.1462-2920.2007.01503.x
21 Verhulst SL, Vael C, Beunckens C, Nelen V, Goossens H, Desager K. A longitudinal analysis on the association between antibiotic use, intestinal microflora, and wheezing during the first year of life. J Asthma 2008;45(9):828–32
https://doi.org/10.1080/02770900802339734
22 Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002;35(Suppl 1):S6–16
https://doi.org/10.1086/341914
23 Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008;455(7216):1109–13
https://doi.org/10.1038/nature07336
24 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444(7122):1027–31
https://doi.org/10.1038/nature05414
25 Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 2016;534(7606):213–7
https://doi.org/10.1038/nature18309
26 Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 2004;92(3):521–6
https://doi.org/10.1079/BJN20041225
27 Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 2014;146(6):1449–58
https://doi.org/10.1053/j.gastro.2014.01.052
28 Rogier EW, Frantz AL, Bruno ME, Wedlund L, Cohen DA, Stromberg AJ, et al. Lessons from mother: long-term impact of antibodies in breast milk on the gut microbiota and intestinal immune system of breastfed offspring. Gut Microbes 2014;5(5):663–8
https://doi.org/10.4161/19490976.2014.969984
29 Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009;9(5):313–23
https://doi.org/10.1038/nri2515
30 Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, et al. A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 2014;506(7489):498–502
https://doi.org/10.1038/nature12907
31 Goh YJ, Klaenhammer TR. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes. Annu Rev Food Sci Technol 2015;6:137–56
https://doi.org/10.1146/annurev-food-022814-015706
32 Morowitz MJ, Carlisle EM, Alverdy JC. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg Clin North Am 2011;91(4):771–85
https://doi.org/10.1016/j.suc.2011.05.001
33 Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 2009;11(8):2112–22
https://doi.org/10.1111/j.1462-2920.2009.01931.x
34 Cani PD, Everard A, Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol 2013;13(6):935–40
https://doi.org/10.1016/j.coph.2013.09.008
35 Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 2012;9(10):577–89
https://doi.org/10.1038/nrgastro.2012.156
36 Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 2012;30(6):1533–42
https://doi.org/10.1016/j.biotechadv.2012.04.003
37 Cebra JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr 1999;69(5):1046S–51S.
38 Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature 2016;535(7610):65–74
https://doi.org/10.1038/nature18847
39 Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 1999;116(5):1107–14
https://doi.org/10.1016/S0016-5085(99)70013-2
40 Magrone T, Jirillo E. The interplay between the gut immune system and microbiota in health and disease: nutraceutical intervention for restoring intestinal homeostasis. Curr Pharm Des 2013;19(7):1329–42.
41 Brenchley JM, Douek DC. Microbial translocation across the GI tract. Annu Rev Immunol 2012;30:149–73
https://doi.org/10.1146/annurev-immunol-020711-075001
42 Hand TW, Dos Santos LM, Bouladoux N, Molloy MJ, Pagán AJ, Pepper M, et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 2012;337(6101):1553–6
https://doi.org/10.1126/science.1220961
43 Ling Z, Liu X, Cheng Y, Jiang X, Jiang H, Wang Y, et al. Decreased diversity of the oral microbiota of patients with hepatitis B virus-induced chronic liver disease: a pilot report. Sci Rep 2015;5:17098
https://doi.org/10.1038/srep17098
44 Cohen J. Vaginal microbiome affects HIV risk. Science 2016;353(6297):331
https://doi.org/10.1126/science.353.6297.331
45 Gu S, Chen Y, Zhang X, Lu H, Lv T, Shen P, et al. Identification of key taxa that favor intestinal colonization of Clostridium difficile in an adult Chinese population. Microbes Infect 2016;18(1):30–8
https://doi.org/10.1016/j.micinf.2015.09.008
46 Ling Z, Liu X, Jia X, Cheng Y, Luo Y, Yuan L, et al. Impacts of infection with different toxigenic Clostridium difficile strains on faecal microbiota in children. Sci Rep 2014;4:7485
https://doi.org/10.1038/srep07485
47 Ling Z, Jin C, Xie T, Cheng Y, Li L, Wu N. Alterations in the fecal microbiota of patients with HIV-1 infection: an observational study in a Chinese population. Sci Rep 2016;6:30673
https://doi.org/10.1038/srep30673
48 Xu M, Wang B, Fu Y, Chen Y, Yang F, Lu H, et al. Changes of fecal Bifidobacterium species in adult patients with hepatitis B virus-induced chronic liver disease. Microb Ecol 2012;63(2):304–13
https://doi.org/10.1007/s00248-011-9925-5
49 Hu Z, Zhang Y, Li Z, Yu Y, Kang W, Han Y, et al. Effect of Helicobacter pylori infection on chronic periodontitis by the change of microecology and inflammation. Oncotarget 2016;7(41):66700–12.
50 Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y, et al. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics 2010;11:488
https://doi.org/10.1186/1471-2164-11-488
51 Giannelli V, Di Gregorio V, Iebba V, Giusto M, Schippa S, Merli M, et al. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol 2014;20(45):16795–810
https://doi.org/10.3748/wjg.v20.i45.16795
52 Nardone G, Rocco A. Probiotics: a potential target for the prevention and treatment of steatohepatitis. J Clin Gastroenterol 2004;38(Suppl 2):S121–2
https://doi.org/10.1097/01.mcg.0000128934.53920.1d
53 Cesaro C, Tiso A, Del Prete A, Cariello R, Tuccillo C, Cotticelli G, et al. Gut microbiota and probiotics in chronic liver diseases. Dig Liver Dis 2011;43(6): 431–8
https://doi.org/10.1016/j.dld.2010.10.015
54 Lakshmi CP, Ghoshal UC, Kumar S, Goel A, Misra A, Mohindra S, et al. Frequency and factors associated with small intestinal bacterial overgrowth in patients with cirrhosis of the liver and extra hepatic portal venous obstruction. Dig Dis Sci 2010;55(4):1142–8
https://doi.org/10.1007/s10620-009-0826-0
55 Gupta A, Dhiman RK, Kumari S, Rana S, Agarwal R, Duseja A, et al. Role of small intestinal bacterial overgrowth and delayed gastrointestinal transit time in cirrhotic patients with minimal hepatic encephalopathy. J Hepatol 2010;53(5):849–55
https://doi.org/10.1016/j.jhep.2010.05.017
56 Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011;54(2):562–72
https://doi.org/10.1002/hep.24423
57 Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014;513(7516):59–64
https://doi.org/10.1038/nature13568
58 Chen Y, Ji F, Guo J, Shi D, Fang D, Li L. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Sci Rep 2016;6:34055
https://doi.org/10.1038/srep34055
59 Chen Y, Guo J, Qian G, Fang D, Shi D, Guo L, et al. Gut dysbiosis in acute-on-chronic liver failure and its predictive value for mortality. J Gastroenterol Hepatol 2015;30(9):1429–37
https://doi.org/10.1111/jgh.12932
60 Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012;21(4):504–16
https://doi.org/10.1016/j.ccr.2012.02.007
61 Ozaslan E, Efe C. Further considerations in autoimmune hepatitis. J Hepatol 2016;64(6):1457–8
https://doi.org/10.1016/j.jhep.2015.12.027
62 Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut 2016;65(2): 330–9
https://doi.org/10.1136/gutjnl-2015-309990
63 Lv L, Fang D, Shi D, Chen D, Yan R, Zhu Y, et al. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol 2016;18(7):2272–86
https://doi.org/10.1111/1462-2920.13401
64 Björnsson E, Cederborg A, Åkvist A, Simren M, Stotzer PO, Bjarnason I. Intestinal permeability and bacterial growth of the small bowel in patients with primary sclerosing cholangitis. Scand J Gastroenterol 2005;40(9):1090–4
https://doi.org/10.1080/00365520510023288
65 Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol 2017;14(1):32–42
https://doi.org/10.1038/nrgastro.2016.147
66 Wesolowski SR, Kasmi KC, Jonscher KR, Friedman JE. Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol. Epub 2016 Oct 26
https://doi.org/10.1038/nrgastro.2016.160
67 Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016;63(3):764–75
https://doi.org/10.1002/hep.28356
68 de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012;13(6):607–15
https://doi.org/10.1016/S1470-2045(12)70137-7
69 Wong BCY, Lam SK, Wong WM, Chen JS, Zheng TT, Feng RE, et al.; China Gastric Cancer Study Group. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA 2004;291(2):187–94
https://doi.org/10.1001/jama.291.2.187
70 Herrera V, Parsonnet J. Helicobacter pylori and gastric adenocarcinoma. Clin Microbiol Infect 2009;15(11):971–6
https://doi.org/10.1111/j.1469-0691.2009.03031.x
71 El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 2000;404(6776):398–402
https://doi.org/10.1038/35006081
72 de Sablet T, Piazuelo MB, Shaffer CL, Schneider BG, Asim M, Chaturvedi R, et al. Phylogeographic origin of Helicobacter pylori is a determinant of gastric cancer risk. Gut 2011;60(9):1189–95
https://doi.org/10.1136/gut.2010.234468
73 Rhead JL, Letley DP, Mohammadi M, Hussein N, Mohagheghi MA, Eshagh Hosseini M, et al. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 2007;133(3):926–36
https://doi.org/10.1053/j.gastro.2007.06.056
74 Cover TL, Krishna US, Israel DA, Peek RM Jr. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res 2003;63(5):951–7.
75 Oertli M, Sundquist M, Hitzler I, Engler DB, Arnold IC, Reuter S, et al. DC-derived IL-18 drives Treg differentiation, murine Helicobacter pylori-specific immune tolerance, and asthma protection. J Clin Invest 2012;122(3):1082–96
https://doi.org/10.1172/JCI61029
76 Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 1995;55(10):2111–5.
77 Kaparakis M, Turnbull L, Carneiro L, Firth S, Coleman HA, Parkington HC, et al. Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells. Cell Microbiol 2010;12(3):372–85
https://doi.org/10.1111/j.1462-5822.2009.01404.x
78 Odenbreit S, Püls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori cagA into gastric epithelial cells by type IV secretion. Science 2000;287(5457):1497–500
https://doi.org/10.1126/science.287.5457.1497
79 Lertpiriyapong K, Whary MT, Muthupalani S, Lofgren JL, Gamazon ER, Feng Y, et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut 2014;63(1):54–63
https://doi.org/10.1136/gutjnl-2013-305178
80 Sanapareddy N, Legge RM, Jovov B, McCoy A, Burcal L, Araujo-Perez F, et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J 2012;6(10):1858–68
https://doi.org/10.1038/ismej.2012.43
81 Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012;22(2):299–306
https://doi.org/10.1101/gr.126516.111
82 Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF, Chen GY, et al. The gut microbiome modulates colon tumorigenesis. MBio 2013;4(6): e00692–13
https://doi.org/10.1128/mBio.00692-13
83 Keku TO, McCoy AN, Azcarate-Peril AM. Fusobacterium spp. and colorectal cancer: cause or consequence? Trends Microbiol 2013;21(10):506–8
https://doi.org/10.1016/j.tim.2013.08.004
84 Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 2015;6:6528
https://doi.org/10.1038/ncomms7528
85 Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14(2):195–206
https://doi.org/10.1016/j.chom.2013.07.012
86 Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013;14(2): 207–15
https://doi.org/10.1016/j.chom.2013.07.007
87 Sokol SY. Wnt signaling and dorso-ventral axis specification in vertebrates. Curr Opin Genet Dev 1999;9(4):405–10
https://doi.org/10.1016/S0959-437X(99)80061-6
88 Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 2009;22(2):349–69
https://doi.org/10.1128/CMR.00053-08
89 Shiryaev SA, Remacle AG, Chernov AV, Golubkov VS, Motamedchaboki K, Muranaka N, et al. Substrate cleavage profiling suggests a distinct function of Bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammation-cancer interface. J Biol Chem 2013;288(48): 34956–67
https://doi.org/10.1074/jbc.M113.516153
90 Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009;15(9):1016–22
https://doi.org/10.1038/nm.2015
91 Huycke MM, Abrams V, Moore DR. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 2002;23(3):529–36
https://doi.org/10.1093/carcin/23.3.529
92 Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 2010;107(25):11537–42
https://doi.org/10.1073/pnas.1001261107
93 Howe GR, Benito E, Castelleto R, Cornée J, Estève J, Gallagher RP, et al. Dietary intake of fiber and decreased risk of cancers of the colon and rectum: evidence from the combined analysis of 13 case-control studies. J Natl Cancer Inst 1992;84(24):1887–96
https://doi.org/10.1093/jnci/84.24.1887
94 Clausen MR, Bonnén H, Mortensen PB. Colonic fermentation of dietary fibre to short chain fatty acids in patients with adenomatous polyps and colonic cancer. Gut 1991;32(8):923–8
https://doi.org/10.1136/gut.32.8.923
95 Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40(1):128–39
https://doi.org/10.1016/j.immuni.2013.12.007
96 Lagergren J, Bergström R, Lindgren A, Nyrén O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 1999;340(11):825–31
https://doi.org/10.1056/NEJM199903183401101
97 Lagergren J. Adenocarcinoma of oesophagus: what exactly is the size of the problem and who is at risk? Gut 2005;54(Suppl 1):i1–5
https://doi.org/10.1136/gut.2004.041517
98 Anderson LA, Murphy SJ, Johnston BT, Watson RG, Ferguson HR, Bamford KB, et al. Relationship between Helicobacter pylori infection and gastric atrophy and the stages of the oesophageal inflammation, metaplasia, adenocarcinoma sequence: results from the FINBAR case-control study. Gut 2008;57(6):734–9
https://doi.org/10.1136/gut.2007.132662
99 Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci USA 2004;101(12):4250–5
https://doi.org/10.1073/pnas.0306398101
100 Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology 2009;137(2):588–97
https://doi.org/10.1053/j.gastro.2009.04.046
101 Finlay IG, Wright PA, Menzies T, McArdle CS. Microbial flora in carcinoma of oesophagus. Thorax 1982;37(3):181–4
https://doi.org/10.1136/thx.37.3.181
102 El-Serag HB, Sonnenberg A. Opposing time trends of peptic ulcer and reflux disease. Gut 1998;43(3):327–33
https://doi.org/10.1136/gut.43.3.327
103 Hamada H, Haruma K, Mihara M, Kamada T, Yoshihara M, Sumii K, et al. High incidence of reflux oesophagitis after eradication therapy for Helicobacter pylori: impacts of hiatal hernia and corpus gastritis. Aliment Pharmacol Ther 2000;14(6):729–35
https://doi.org/10.1046/j.1365-2036.2000.00758.x
104 Sommer F, Bäckhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol 2013;11(4):227–38
https://doi.org/10.1038/nrmicro2974
105 Franks PW, McCarthy MI. Exposing the exposures responsible for type 2 diabetes and obesity. Science 2016;354(6308):69–73
https://doi.org/10.1126/science.aaf5094
106 Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al.; MetaHIT Consortium. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500(7464):541–6
https://doi.org/10.1038/nature12506
107 Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480–4
https://doi.org/10.1038/nature07540
108 Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341(6150):1241214
https://doi.org/10.1126/science.1241214
109 David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505(7484):559–63
https://doi.org/10.1038/nature12820
110 Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 2015;22(4):658–68
https://doi.org/10.1016/j.cmet.2015.07.026
111 Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016;535(7610):56–64
https://doi.org/10.1038/nature18846
112 Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 2015;17(5):681–9
https://doi.org/10.1016/j.chom.2015.03.006
113 Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014;159(3):514–29
https://doi.org/10.1016/j.cell.2014.09.048
114 Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489(7415):242–9
https://doi.org/10.1038/nature11552
115 de Vos WM, Nieuwdorp M. Genomics: a gut prediction. Nature 2013;498(7452): 48–9
https://doi.org/10.1038/nature12251
116 Delzenne NM, Cani PD. Gut microflora is a key player in host energy homeostasis. Med Sci (Paris) 2008;24(5):505–10
https://doi.org/10.1051/medsci/2008245505
117 Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016;24(1):41–50
https://doi.org/10.1016/j.cmet.2016.05.005
118 Camilleri M. Peripheral mechanisms in appetite regulation. Gastroenterology 2015;148(6):1219–33
https://doi.org/10.1053/j.gastro.2014.09.016
119 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490(7418):55–60
https://doi.org/10.1038/nature11450
120 Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498(7452):99–103
https://doi.org/10.1038/nature12198
121 Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al.; MetaHIT Consortium. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015;528(7581): 262–6
https://doi.org/10.1038/nature15766
122 Burcelin R. Gut microbiota and immune crosstalk in metabolic disease. Mol Metab 2016;5(9):771–81
https://doi.org/10.1016/j.molmet.2016.05.016
123 Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al.; MetaHIT Consortium. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016;535(7612):376–81
https://doi.org/10.1038/nature18646
124 Mardinoglu A, Boren J, Smith U. Confounding effects of metformin on the human gut microbiome in type 2 diabetes. Cell Metab 2016;23(1):10–2
https://doi.org/10.1016/j.cmet.2015.12.012
125 Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol 2011;77(18):6718–21
https://doi.org/10.1128/AEM.05212-11
126 Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X, et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol 2014;80(8):2546–54
https://doi.org/10.1128/AEM.00003-14
127 Saarinen KM, Pelkonen AS, Mäkelä MJ, Savilahti E. Clinical course and prognosis of cow’s milk allergy are dependent on milk-specific IgE status. J Allergy Clin Immunol 2005;116(4):869–75
https://doi.org/10.1016/j.jaci.2005.06.018
128 Bunyavanich S, Shen N, Grishin A, Wood R, Burks W, Dawson P, et al. Early-life gut microbiome composition and milk allergy resolution. J Allergy Clin Immunol 2016;138(4):1122–30
https://doi.org/10.1016/j.jaci.2016.03.041
129 Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 2015;138:179–87
https://doi.org/10.1016/j.physbeh.2014.10.033
130 Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 2015;48:186–94
https://doi.org/10.1016/j.bbi.2015.03.016
131 Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012;13(5):440–7
https://doi.org/10.1038/embor.2012.32
132 van Nimwegen FA,?Penders J,?Stobberingh EE,?Postma DS,?Koppelman GH,?Kerkhof M, et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J Allergy Clin Immunol 2011;128(5):948–55.e1-3.
133 Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011;331(6015):337–41
https://doi.org/10.1126/science.1198469
134 Charlson FJ, Baxter AJ, Cheng HG, Shidhaye R, Whiteford HA. The burden of mental, neurological, and substance use disorders in China and India: a systematic analysis of community representative epidemiological studies. Lancet 2016;388(10042):376–89
https://doi.org/10.1016/S0140-6736(16)30590-6
135 Kendler KS. What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Mol Psychiatry 2013;18(10):1058–66
https://doi.org/10.1038/mp.2013.50
136 Maes M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011;35(3):664–75
https://doi.org/10.1016/j.pnpbp.2010.06.014
137 Schmitt A, Malchow B, Hasan A, Falkai P. The impact of environmental factors in severe psychiatric disorders. Front Neurosci 2014;8:19
https://doi.org/10.3389/fnins.2014.00019
138 Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13(10):701–12
https://doi.org/10.1038/nrn3346
139 Maes M, Kuber a M, Leunis JC, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord 2012;141(1):55–62
https://doi.org/10.1016/j.jad.2012.02.023
140 Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans E. In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand 2013;127(5):344–54
https://doi.org/10.1111/j.1600-0447.2012.01908.x
141 Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, Jiménez-Hernández N, Pérez-Cobas AE, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 2011;6(3):e17447
https://doi.org/10.1371/journal.pone.0017447
142 Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, et al. Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci USA 2014;111(22):E2329–38
https://doi.org/10.1073/pnas.1319284111
143 Santiago-Rodriguez TM, Naidu M, Abeles SR, Boehm TK, Ly M, Pride DT. Transcriptome analysis of bacteriophage communities in periodontal health and disease. BMC Genomics 2015;16:549
https://doi.org/10.1186/s12864-015-1781-0
144 Arnold JW, Roach J, Azcarate-Peril MA. Emerging technologies for gut microbiome research. Trends Microbiol 2016;24(11):887–901
https://doi.org/10.1016/j.tim.2016.06.008
145 Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 2002;68(8):3878–85
https://doi.org/10.1128/AEM.68.8.3878-3885.2002
146 Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 2010;76(8):2445–50
https://doi.org/10.1128/AEM.01754-09
147 Jung D, Seo EY, Epstein SS, Joung Y, Han J, Parfenova VV, et al. Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. FEMS Microbiol Ecol 2014;90(2):417–23
https://doi.org/10.1111/1574-6941.12399
148 Possemiers S, Verthé K, Uyttendaele S, Verstraete W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 2004;49(3):495–507
https://doi.org/10.1016/j.femsec.2004.05.002
149 Petrof EO, Khoruts A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology 2014;146(6):1573–82
https://doi.org/10.1053/j.gastro.2014.01.004
150 McDonald JA, Fuentes S, Schroeter K, Heikamp-deJong I, Khursigara CM, de Vos WM, et al. Simulating distal gut mucosal and luminal communities using packed-column biofilm reactors and an in vitro chemostat model. J Microbiol Methods 2015;108:36–44
https://doi.org/10.1016/j.mimet.2014.11.007
151 Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR, et al. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 2014;32(5):473–8
https://doi.org/10.1038/nbt.2857
152 Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012;12(12):2165–74
https://doi.org/10.1039/c2lc40074j
153 Rusconi R, Garren M, Stocker R. Microfluidics expanding the frontiers of microbial ecology. Annu Rev Biophys 2014;43:65–91
https://doi.org/10.1146/annurev-biophys-051013-022916
154 Englert DL, Manson MD, Jayaraman A. Investigation of bacterial chemotaxis in flow-based microfluidic devices. Nat Protoc 2010;5(5):864–72
https://doi.org/10.1038/nprot.2010.18
155 Wang Y, Ahmad AA, Sims CE, Magness ST, Allbritton NL. In vitro generation of colonic epithelium from primary cells guided by microstructures. Lab Chip 2014;14(9):1622–31
https://doi.org/10.1039/C3LC51353J
156 Gracz AD, Williamson IA, Roche KC, Johnston MJ, Wang F, Wang Y, et al. A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis. Nat Cell Biol 2015;17(3):340–9
https://doi.org/10.1038/ncb3104
157 Forbester JL, Goulding D, Vallier L, Hannan N, Hale C, Pickard D, et al. Interaction of Salmonella enterica serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun 2015;83(7):2926–34
https://doi.org/10.1128/IAI.00161-15
158 Leslie JL, Huang S, Opp JS, Nagy MS, Kobayashi M, Young VB, et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 2015;83(1):138–45
https://doi.org/10.1128/IAI.02561-14
159 Sommer MO. Advancing gut microbiome research using cultivation. Curr Opin Microbiol 2015;27:127–32
https://doi.org/10.1016/j.mib.2015.08.004
160 Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al.; MICRO-Obes Consortium. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016;65(3):426–36
https://doi.org/10.1136/gutjnl-2014-308778
161 Chu J, Vila-Farres X, Inoyama D, Ternei M, Cohen LJ, Gordon EA, et al. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat Chem Biol 2016;12(12):1004–6
https://doi.org/10.1038/nchembio.2207
162 Wang J, Jia H. Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol 2016;14(8):508–22
https://doi.org/10.1038/nrmicro.2016.83
163 Lu H, Wu Z, Xu W, Yang J, Chen Y, Li L. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol 2011;61(3):693–703
https://doi.org/10.1007/s00248-010-9801-8
164 Lu H, Zhang C, Qian G, Hu X, Zhang H, Chen C, et al. An analysis of microbiota-targeted therapies in patients with avian influenza virus subtype H7N9 infection. BMC Infect Dis 2014;14:359
https://doi.org/10.1186/1471-2334-14-359
165 van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368(5):407–15
https://doi.org/10.1056/NEJMoa1205037
166 Dhiman RK, Rana B,?Agrawal S,?Garg A,?Chopra M,?Thumburu KK, et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized, controlled trial. Gastroenterology 2014;147(6):1327–37.e3
https://doi.org/10.1053/j.gastro.2014.08.031
167 Lv LX, Hu XJ, Qian GR, Zhang H, Lu HF, Zheng BW, et al. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 improves acute liver injury induced by D-galactosamine in rats. Appl Microbiol Biotechnol 2014;98(12):5619–32
https://doi.org/10.1007/s00253-014-5638-2
168 Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500(7461):232–6
https://doi.org/10.1038/nature12331
169 Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013;342(6161):967–70
https://doi.org/10.1126/science.1240527
170 Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013;342(6161):971–6
https://doi.org/10.1126/science.1240537
171 West CE, Jenmalm MC, Kozyrskyj AL, Prescott SL. Probiotics for treatment and primary prevention of allergic diseases and asthma: looking back and moving forward. Expert Rev Clin Immunol 2016;12(6):625–39
https://doi.org/10.1586/1744666X.2016.1147955
[1] Spyridon Achinas, Vasileios Achinas, Gerrit Jan Willem Euverink. A Technological Overview of Biogas Production from Biowaste[J]. Engineering, 2017, 3(3): 299-307.
[2] Hudan Pan, Runze Li, Ting Li, Jun Wang, Liang Liu. Whether Probiotic Supplementation Benefits Rheumatoid Arthritis Patients: A Systematic Review and Meta-Analysis[J]. Engineering, 2017, 3(1): 115-121.
[3] Guishuai Lv, Ningtao Cheng, Hongyang Wang. The Gut Microbiota, Tumorigenesis, and Liver Diseases[J]. Engineering, 2017, 3(1): 110-114.
[4] Marc Mac Giolla Eain, Joanna Baginska, Kacy Greenhalgh, Joëlle V. Fritz, Frederic Zenhausern, Paul Wilmes. Engineering Solutions for Representative Models of the Gastrointestinal Human-Microbe Interface[J]. Engineering, 2017, 3(1): 60-65.
[5] Jian Xu, Bo Ma, Xiaoquan Su, Shi Huang, Xin Xu, Xuedong Zhou, Wei Huang, Rob Knight. Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data[J]. Engineering, 2017, 3(1): 66-70.
[6] Wen-Wei Li, Han-Qing Yu. Advances in Energy-Producing Anaerobic Biotechnologies for Municipal Wastewater Treatment[J]. Engineering, 2016, 2(4): 438-446.
[7] Doris Sung. A New Look at Building Facades as Infrastructure[J]. Engineering, 2016, 2(1): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
您是网站的第 位访客,今日访问量 京ICP备11030251号-2

 Engineering