Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (1) : 28-35     https://doi.org/10.1016/J.ENG.2017.01.010
Research |
软骨组织工程研究进展——我们的经验与未来展望
刘豫1,2,3,周广东1,2,3,曹谊林1,2,4()
1. Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
2. National Tissue Engineering Research Center of China, Shanghai 200241, China
3. Research Institute of Plastic Surgery, Plastic Surgery Hospital, Weifang Medical University, Weifang, Shandong 261041, China
4. Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing 100144, China
全文: PDF(2916 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

软骨缺损难以自行修复,组织工程是实现软骨再生的理想途径。目前,组织工程软骨主要有两类用途:一是用于骨科或关节外科,修复关节表面或半月板部位的软骨缺损,实现关节运动功能的重建;二是用于整形或头颈外科,修复耳廓、气管、睑板、鼻、喉等具有特殊形态及功能的软骨缺损。不同应用目标的组织工程软骨,其构建方法和所面临的挑战,以及临床转化进程均会有很大差别。本文旨在针对上述两大应用目标,结合我们团队在研究过程中所建立的观点及积累的经验,对组织工程软骨目前的主要研究进展和所面临的挑战,以及未来的发展方向做一简要总结。

关键词 软骨组织工程临床前大动物实验临床转化骨科整形外科    
Abstract

Given the limited spontaneous repair that follows cartilage injury, demand is growing for tissue engineering approaches for cartilage regeneration. There are two major applications for tissue-engineered cartilage. One is in orthopedic surgery, in which the engineered cartilage is usually used to repair cartilage defects or loss in an articular joint or meniscus in order to restore the joint function. The other is for head and neck reconstruction, in which the engineered cartilage is usually applied to repair cartilage defects or loss in an auricle, trachea, nose, larynx, or eyelid. The challenges faced by the engineered cartilage for one application are quite different from those faced by the engineered cartilage for the other application. As a result, the emphases of the engineering strategies to generate cartilage are usually quite different for each application. The statuses of preclinical animal investigations and of the clinical translation of engineered cartilage are also at different levels for each application. The aim of this review is to provide an opinion piece on the challenges, current developments, and future directions for cartilage engineering for both applications.

Keywords Cartilage tissue engineering      Preclinical immunocompetent animal      investigation      Clinical translation      Orthopedic surgery      Head and neck reconstruction     
基金资助: 
通讯作者: 曹谊林     E-mail: yilincao@yahoo.com
最新录用日期:    在线预览日期:    发布日期: 2017-03-02
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Yu Liu
Guangdong Zhou
Yilin Cao
引用本文:   
Yu Liu,Guangdong Zhou,Yilin Cao. Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions[J]. Engineering, 2017, 3(1): 28-35.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.01.010     OR     http://engineering.org.cn/EN/Y2017/V3/I1/28
Fig.1  Repair of autologous pig osteochondral defects by polyglycolic acid (PGA) scaffold loaded with chondrocytes or bone marrow stromal cells (BMSCs), respectively. Both cells realized cartilage repair with a smooth surface. Chondrocytes failed to realize tissue-specific repair in the subchondral region. HE: haemotoxylin and eosin; NC: native cartilage; IF: interface; RC: regenerated cartilage; CB: subchondral bone. Some of this data was published in Refs. [12,30].
Fig.2  Repair of autologous dog meniscus defects by a PGA scaffold loaded with chondrogenically induced fibroblasts. Fibroblasts were chondrogenically induced with cartilage-derived morphogenetic protein-1 (CDMP1) and seeded into a meniscus-shaped PGA scaffold, with non-induced cells as the control. At 3 months post implantation, the meniscus generated by samples from the induced group resembled a native meniscus in terms of gross appearance, histological staining, and microstructure, which was revealed by scanning electron microscope (SEM) observation.
Fig.3  Functional reconstruction of a segmental tracheal defect by pedicled tissue-engineered trachea in a rabbit model. (a) Tissue-engineered trachea; (b) the tissue-engineered trachea wrapped by the sternohyoid muscle for vascularization; (c) the muscle-pedicled trachea used to repair a segmental defect of the trachea with a silicon tube as a stent; (d) the tissue-engineered trachea after 4 weeks of reconstruction; (e) HE staining of (d); (f) high magnification of the red frame of (e); (g) cross-section of the tissue-engineered trachea after 6 months post-reconstruction, showing a fine interface healing with the native trachea (yellow frame: interface, blue frame: engineered trachea); (h) HE staining showing epithelium ingrowth at 2 weeks post-reconstruction; (i) HE staining showing epithelium ingrowth at 8 weeks post-reconstruction. Some of the data has been published [87].
1 Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 2016;7(1):56
https://doi.org/10.1186/s13287-016-0314-3 pmid: 27089917
2 Reinholz GG, Lu L, Saris DBF, Yaszemski MJO, O’Driscoll SW. Animal models for cartilage reconstruction. Biomaterials 2004;25(9):1511–21
https://doi.org/10.1016/S0142-9612(03)00498-8 pmid: 14697854
3 Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001;391(391 Suppl):S362–9
https://doi.org/10.1097/00003086-200110001-00033 pmid: 11603719
4 Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 2003;85(Suppl 2):25–32
https://doi.org/10.2106/00004623-200300002-00004 pmid: 12721342
5 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantatio n. N Engl J Med 1994;331(14):889–95
https://doi.org/10.1056/NEJM199410063311401 pmid: 8078550
6 Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 2011;17(4):281–99
https://doi.org/10.1089/ten.teb.2011.0077 pmid: 21510824
7 Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, et alRestoration of articular cartilage. J Bone Joint Surg Am 2014;96(4):336–44
https://doi.org/10.2106/JBJS.L.01329 pmid: 24553893
8 Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012;338(6109):917–21
https://doi.org/10.1126/science.1222454 pmid: 23161992
9 Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920–6
https://doi.org/10.1126/science.8493529 pmid: 8493529
10 Chaganti RK, Lane NE. Risk factors for incident osteoarthritis of the hip and knee. Curr Rev Musculoskelet Med 2011;4(3):99–104
https://doi.org/10.1007/s12178-011-9088-5
11 Hunziker EB, Lippuner K, Keel MJ, Shintani N. An educational review of cartilage repair: precepts & practices—myths & misconceptions—progress & prospects. Osteoarthritis Cartilage 2015;23(3):334–50
https://doi.org/10.1016/j.joca.2014.12.011 pmid: 25534362
12 Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, et alRepairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng 2002;8(4):709–21.. PMID:12202009
https://doi.org/10.1089/107632702760240616
13 Danišovič Ľ, Boháč M, Zamborský R, Oravcová L, Provazníková Z, Csöbönyeiová M, et alComparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering. Gen Physiol Biophys 2016;35(2):207–14
https://doi.org/10.4149/gpb_2015044 pmid: 26891275
14 Caminal M, Peris D, Fonseca C, Barrachina J, Codina D, Rabanal RM, et alCartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect. Cytotechnology 2016;68(4):907–19
https://doi.org/10.1007/s10616-015-9842-4 pmid: 25595211
15 Lietman SA. Induced pluripotent stem cells in cartilage repair. World J Orthop 2016;7(3):149–55
https://doi.org/10.5312/wjo.v7.i3.149 pmid: 27004161
16 Zhao G, Yin S, Liu G, Cen L, Sun J, Zhou H, et alIn vitro engineering of fibrocartilage using CDMP1 induced dermal fibroblasts and polyglycolide. Biomaterials 2009;30(19):3241–50
https://doi.org/10.1016/j.biomaterials.2009.02.027 pmid: 19286250
17 El Sayed K, Haisch A, John T, Marzahn U, Lohan A, Müller RD, et alHeterotopic autologous chondrocyte transplantation—a realistic approach to support articular cartilage repair? Tissue Eng Part B Rev 2010;16(6):603–16
https://doi.org/10.1089/ten.teb.2010.0167 pmid: 20825360
18 Lohan A, Marzahn U, El Sayed K, Haisch A, Müller RD, Kohl B, et alOsteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model. Ann Anat 2014;196(5):317–26
https://doi.org/10.1016/j.aanat.2014.03.002 pmid: 24812031
19 Van Osch GJ, Mandl EW, Jahr H, Koevoet W, Nolst-Trenité G, Verhaar JA. Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering. Biorheology 2004;41(3–4):411–21
pmid: 15299273
20 El Sayed K, Marzahn U, John T, Hoyer M, Zreiqat H, Witthuhn A, et alPGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair. J Tissue Eng Regen Med 2013;7(1):61–72
https://doi.org/10.1002/term.496 pmid: 22081560
21 Dehne T, Karlsson C, Ringe J, Sittinger M, Lindahl A. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation. Arthritis Res Ther 2009;11(5):R133
https://doi.org/10.1186/ar2800 pmid: 19723327
22 Schrobback K, Klein TJ, Crawford R, Upton Z, Malda J, Leavesley DI. Effects of oxygen and culture system on in vitro propagation and redifferentiation of osteoarthritic human articular chondrocytes. Cell Tissue Res 2012;347(3):649–63
https://doi.org/10.1007/s00441-011-1193-7 pmid: 21638206
23 Oda T, Sakai T, Hiraiwa H, Hamada T, Ono Y, Nakashima M, et alOsteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering. Biochem Biophys Res Commun 2016;479(3):469–75
https://doi.org/10.1016/j.bbrc.2016.09.085 pmid: 27644879
24 Frondoza C, Sohrabi A, Hungerford D. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 1996;17(9):879–88
https://doi.org/10.1016/0142-9612(96)83283-2 pmid: 8718933
25 Çetinkaya G, Kahraman AS, Gümüşderelioğlu M, Arat S, Onur MA. Derivation, characterization and expansion of fetal chondrocytes on different microcarriers. Cytotechnology 2011;63(6):633–43
https://doi.org/10.1007/s10616-011-9380-7 pmid: 21837435
26 Grogan SP, Barbero A, Diaz-Romero J, Cleton-Jansen AM, Soeder S, Whiteside R, et alIdentification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis Rheum 2007;56(2):586–95
https://doi.org/10.1002/art.22408 pmid: 17265493
27 Appel B, Baumer J, Eyrich D, Sarhan H, Toso S, Englert C, et al. Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment. Osteoarthritis Cartilage 2009;17(11):1503–12
https://doi.org/10.1016/j.joca.2009.05.002
28 Egli RJ, Bastian JD, Ganz R, Hofstetter W, Leunig Met alHypoxic expansion promotes the chondrogenic potential of articular chondrocytes. J Orthop Res 2008;26(7):977–85
https://doi.org/10.1002/jor.20603 pmid: 18302236
29 Huang BJ, Hu JC, Athanasiou KA. Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage. Acta Biomater 2016;43:150–9
https://doi.org/10.1016/j.actbio.2016.07.044 pmid: 27475530
30 Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng 2006;12(11):3209–21
https://doi.org/10.1089/ten.2006.12.3209 pmid: 17518635
31 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et alMultilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143–7
https://doi.org/10.1126/science.284.5411.143 pmid: 10102814
32 Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007;327(3):449–62
https://doi.org/10.1007/s00441-006-0308-z pmid: 17053900
33 Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 2007;28(5):219–26
https://doi.org/10.1016/j.it.2007.03.001 pmid: 17400510
34 Du W, Reppel L, Leger L, Schenowitz C, Huselstein C, Bensoussan D, et alMesenchymal stem cells derived from human bone marrow and adipose tissue maintain their immunosuppressive properties after chondrogenic differentiation: role of HLA-G. Stem Cells Dev 2016;25(19):1454–69
https://doi.org/10.1089/scd.2016.0022 pmid: 27465875
35 Bomer N, den Hollander W, Suchiman H, Houtman E, Slieker RC, Heijmans BT, et alNeo-cartilage engineered from primary chondrocytes is epigenetically similar to autologous cartilage, in contrast to using mesenchymal stem cells. Osteoarthritis Cartilage 2016;24(8):1423–30
https://doi.org/10.1016/j.joca.2016.03.009 pmid: 26995110
36 Cushing MC, Anseth KS. Hydrogel cell cultures. Science 2007;316(5828):1133–4
https://doi.org/10.1126/science.1140171 pmid: 17525324
37 Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982;30(1):215–24
https://doi.org/10.1016/0092-8674(82)90027-7 pmid: 7127471
38 Kesti M, Müller M, Becher J, Schnabelrauch M, D’Este M, Eglin D, et alA versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater 2015;11:162–72
https://doi.org/10.1016/j.actbio.2014.09.033 pmid: 25260606
39 Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015;16(5):1489–96
https://doi.org/10.1021/acs.biomac.5b00188 pmid: 25806996
40 Abbadessa A, Blokzijl MM, Mouser VH, Marica P, Malda J, Hennink WE, et alA thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications. Carbohydr Polym 2016;149:163–74
https://doi.org/10.1016/j.carbpol.2016.04.080 pmid: 27261741
41 Lee H, Park TG. Photo-crosslinkable, biomimetic, and thermo-sensitive Pluronic grafted hyaluronic acid copolymers for injectable delivery of chondrocytes. J Biomed Mater Res A 2009;88A(3):797–806
https://doi.org/10.1002/jbm.a.31983 pmid: 18381639
42 Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJ. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 2009;30(3):344–53
https://doi.org/10.1016/j.biomaterials.2008.09.037 pmid: 18930540
43 Mellati A, Fan CM, Tamayol A, Annabi N, Dai S, Bi J, et alMicroengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnol Bioeng 2017;114(1):217–31
https://doi.org/10.1002/bit.26061
44 Liu H, Liu J, Qi C, Fang Y, Zhang L, Zhuo R, et alThermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater 2016;35:228–37
https://doi.org/10.1016/j.actbio.2016.02.028 pmid: 26911882
45 Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ. Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng Part A 2010;16(2):465–77
https://doi.org/10.1089/ten.tea.2009.0158 pmid: 19705959
46 Mendes AC, Baran ET, Reis RL, Azevedo HS. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5(6):582–612
https://doi.org/10.1002/wnan.1238 pmid: 23929805
47 Florine EM, Miller RE, Liebesny PH, Mroszczyk KA, Lee RT, Patwari P, et alDelivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels. Tissue Eng Part A 2015;21(3–4):637–46
https://doi.org/10.1089/ten.tea.2013.0679 pmid: 25231349
48 Roach BL, Kelmendi-Doko A, Balutis EC, Marra KG, Ateshian GA, Hung CT. Dexamethasone release from within engineered cartilage as a chondroprotective strategy against interleukin-1α. Tissue Eng Part A 2016;22(7–8):621–32.. PMID:26956216
https://doi.org/10.1089/ten.tea.2016.0018
49 Florine EM, Miller RE, Porter RM, Evans CH, Kurz B, Grodzinsky AJ. Effects of dexamethasone on mesenchymal stromal cell chondrogenesis and aggrecanase activity: comparison of agarose and self-assembling peptide scaffolds. Cartilage 2013;4(1):63–74
https://doi.org/10.1177/1947603512455196 pmid: 24533173
50 Chu J, Zeng S, Gao L, Groth T, Li Z, Kong J, et alPoly(L-lactic acid) porous scaffold-supported alginate hydrogel with improved mechanical properties and biocompatibility. Int J Artif Organs 2016;39(8):435–43
https://doi.org/10.5301/ijao.5000516 pmid: 27646631
51 Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, et al25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 2014;26(1):85–124
https://doi.org/10.1002/adma.201303233 pmid: 24741694
52 Liu W, Cao Y. Application of scaffold materials in tissue reconstruction in immunocompetent mammals: our experience and future requirements. Biomaterials 2007;28(34):5078–86
https://doi.org/10.1016/j.biomaterials.2007.07.028 pmid: 17669487
53 Kon E, Filardo G, Perdisa F, Venieri G, Marcacci M. Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop 2014;1:10
https://doi.org/10.1186/s40634-014-0010-0 pmid: 26914755
54 Huang H, Zhang X, Hu X, Shao Z, Zhu J, Dai L, et alA functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration. Biomaterials 2014;35(36):9608–19
https://doi.org/10.1016/j.biomaterials.2014.08.020 pmid: 25176065
55 Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, et alRegeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 2013;34(28):6706–16
https://doi.org/10.1016/j.biomaterials.2013.05.038 pmid: 23773816
56 Ahern BJ, Parvizi J, Boston R, Schaer TP. Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 2009;17(6):705–13
https://doi.org/10.1016/j.joca.2008.11.008 pmid: 19101179
57 Malfait AM, Little CB. On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther 2015;17:225
https://doi.org/10.1186/s13075-015-0747-6 pmid: 26364707
58 Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage 2013;21(12):1824–33
https://doi.org/10.1016/j.joca.2013.08.024 pmid: 24018339
59 Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016;98:1–22
https://doi.org/10.1016/j.biomaterials.2016.04.018 pmid: 27177218
60 Santoro R, Olivares AL, Brans G, Wirz D, Longinotti C, Lacroix D, et alBioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. Biomaterials 2010;31(34):8946–52
https://doi.org/10.1016/j.biomaterials.2010.08.009 pmid: 20800280
61 Dickhut A, Gottwald E, Steck E, Heisel C, Richter W. Chondrogenesis of mesenchymal stem cells in gel-like biomaterials in vitro and in vivo. Front Biosci 2008;13:4517–28
https://doi.org/10.2741/3020 pmid: 18508526
62 De Bari C, Dell’Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 2004;50(1):142–50
https://doi.org/10.1002/art.11450 pmid: 14730610
63 Liu K, Zhou G, Liu W, Zhang W, Cui L, Liu X, et alThe dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Biomaterials 2008;29(14):2183–92
https://doi.org/10.1016/j.biomaterials.2008.01.021 pmid: 18289667
64 Kamil SH, Vacanti MP, Vacanti CA, Eavey RD. Microtia chondrocytes as a donor source for tissue-engineered cartilage. Laryngoscope 2004;114(12):2187–90
https://doi.org/10.1097/01.mlg.0000149455.68135.de pmid: 15564842
65 Melgarejo-Ramírez Y, Sánchez-Sánchez R, García-López J, Brena-Molina AM, Gutiérrez-Gómez C, Ibarra C, et alCharacterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies. Cell Tissue Bank 2016;17(3):481–9
https://doi.org/10.1007/s10561-016-9574-5 pmid: 27566509
66 Zhang L, He A, Yin Z, Yu Z, Luo X, Liu W, et alRegeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials 2014;35(18):4878–87
https://doi.org/10.1016/j.biomaterials.2014.02.043 pmid: 24656731
67 Tay AG, Farhadi J, Suetterlin R, Pierer G, Heberer M, Martin I. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 2004;10(5–6):762–70
https://doi.org/10.1089/1076327041348572 pmid: 15265293
68 Dickhut A, Pelttari K, Janicki P, Wagner W, Eckstein V, Egermann M, et alCalcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol 2009;219(1):219–26
https://doi.org/10.1002/jcp.21673 pmid: 19107842
69 Ko CY, Ku KL, Yang SR, Lin TY, Peng S, Peng YS, et alIn vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG -PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med 2016;10(10):E485–96
https://doi.org/10.1002/term.1846 pmid: 24668937
70 Liu X, Sun H, Yan D, Zhang L, Lv X, Liu T, et alIn vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 2010;31(36):9406–14
https://doi.org/10.1016/j.biomaterials.2010.08.052 pmid: 21056466
71 Kang N, Liu X, Yan L, Wang Q, Cao Y, Xiao R. Different ratios of bone marrow mesenchymal stem cells and chondrocytes used in tissue-engineered cartilage and its application for human ear-shaped substitutes in vitro. Cells Tissues Organs 2013;198(5):357–66
https://doi.org/10.1159/000357669 pmid: 24503710
72 Wu L, Leijten JC, Georgi N, Post JN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 2011;17(9–10):1425–36
https://doi.org/10.1089/ten.tea.2010.0517 pmid: 21247341
73 Wu L, Prins HJ, Helder MN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A 2012;18(15–16):1542–51
https://doi.org/10.1089/ten.tea.2011.0715 pmid: 22429306
74 de Windt TS, Saris DB, Slaper-Cortenbach IC, van Rijen MH, Gawlitta D, Creemers LB, et alDirect cell-cell contact with chondrocytes is a key mechanism in multipotent mesenchymal stromal cell-mediated chondrogenesis. Tissue Eng Part A 2015;21(19–20):2536–47
https://doi.org/10.1089/ten.tea.2014.0673 pmid: 26166387
75 Yanaga H, Imai K, Fujimoto T, Yanaga K. Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia. Plast Reconstr Surg 2009;124(3):817–25
https://doi.org/10.1097/PRS.0b013e3181b17c0e pmid: 19730300
76 Yanaga H, Imai K, Tanaka Y, Yanaga K. Two-stage transplantation of cell-engineered autologous auricular chondrocytes to regenerate chondrofat composite tissue: clinical application in regenerative surgery. Plast Reconstr Surg 2013;132(6):1467–77
https://doi.org/10.1097/01.prs.0000434408.32594.52 pmid: 24281577
77 Weidenbecher M, Tucker HM, Awadallah A, Dennis JE. Fabrication of a neotrachea using engineered cartilage. Laryngoscope 2008;118(4):593–8
https://doi.org/10.1097/MLG.0b013e318161f9f8 pmid: 18197138
78 Weidenbecher M, Tucker HM, Gilpin DA, Dennis JE. Tissue-engineered trachea for airway reconstruction. Laryngoscope 2009;119(11):2118–23
https://doi.org/10.1002/lary.20700 pmid: 19806650
79 Bichara DA, Pomerantseva I, Zhao X, Zhou L, Kulig KM, Tseng A, et alSuccessful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model. Tissue Eng Part A 2014;20(1–2):303–12
https://doi.org/10.1089/ten.tea.2013.0150 pmid: 23980800
80 Pomerantseva I, Bichara DA, Tseng A, Cronce MJ, Cervantes TM, Kimura AM, et alEar-shaped stable auricular cartilage engineered from extensively expanded chondrocytes in an immunocompetent experimental animal model. Tissue Eng Part A 2016;22(3–4):197–207
https://doi.org/10.1089/ten.tea.2015.0173 pmid: 26529401
81 Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L, et alDecellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 2012;18(21–22):2195–209
https://doi.org/10.1089/ten.tea.2011.0705 pmid: 22690787
82 Luo X, Zhou G, Liu W, Zhang WJ, Cen L, Cui L, et alIn vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomed Mater 2009;4(2):025006
https://doi.org/10.1088/1748-6041/4/2/025006 pmid: 19258698
83 Liu Y, Li D, Yin Z, Luo X, Liu W, Zhang W, et alProlonged in vitro precultivation alleviates post-implantation inflammation and promotes stable subcutaneous cartilage formation in a goat model. Biomed Mater 2016;12(1):015006
https://doi.org/10.1088/1748-605X/12/1/015006 pmid: 27910822
84 Zhou L, Pomerantseva I, Bassett EK, Bowley CM, Zhao X, Bichara DA, et alEngineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng Part A 2011;17(11–12):1573–81
https://doi.org/10.1089/ten.tea.2010.0627 pmid: 21284558
85 Centola M, Abbruzzese F, Scotti C, Barbero A, Vadalà G, Denaro V, et al. Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage. Tissue Eng Part A 2013;19(17–18):1960–71
https://doi.org/10.1089/ten.tea.2012.0455
86 Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016;34(3):312–9
https://doi.org/10.1038/nbt.3413 pmid: 26878319
87 Luo X, Liu Y, Zhang Z, Tao R, Liu Y, He A, et alLong-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits. Biomaterials 2013;34(13):3336–44
https://doi.org/10.1016/j.biomaterials.2013.01.060 pmid: 23380355
88 Haisch A. Ear reconstruction through tissue engineering. Adv Otorhinolaryngol 2010;68:108–19
https://doi.org/10.1159/000314566 pmid: 20442565
89 Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997;100(2):297–302; discussion 303–4
https://doi.org/10.1097/00006534-199708000-00001 pmid: 9252594
90 Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et alClinical transplantation of a tissue-engineered airway. Lancet 2008;372(9655):2023–30
https://doi.org/10.1016/S0140-6736(08)61598-6 pmid: 19022496
91 Gonfiotti A, Jaus MO, Barale D, Baiguera S, Comin C, Lavorini F, et alThe first tissue-engineered airway transplantation: 5-year follow-up results. Lancet 2014;383(9913):238–44
https://doi.org/10.1016/S0140-6736(13)62033-4 pmid: 24161821
92 Jungebluth P, Alici E, Baiguera S, Blomberg P, Bozóky B, Crowley C, et alTracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 2011;378(9808):1997–2004. Erratum in: Lancet 2016;387(10022):944 ; Lancet 2016;387(10025):1276
https://doi.org/10.1016/S0140-6736(11)61715-7 pmid: 22119609
93 Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, et alStem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 2012;380(9846):994–1000
https://doi.org/10.1016/S0140-6736(12)60737-5 pmid: 22841419
94 Fulco I, Miot S, Haug MD, Barbero A, Wixmerten A, Feliciano S, et alEngineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet 2014;384(9940):337–46
https://doi.org/10.1016/S0140-6736(14)60544-4 pmid: 24726477
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585-.
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583-584.
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578-579.
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580-582.
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467-476.
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552-558.
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434-435.
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445-451.
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281-282.
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379-384.
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416-422.
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423-427.
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393-401.
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285-289.
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
您是网站的第 位访客,今日访问量 京ICP备11030251号-2

 Engineering