Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (1) : 90-97     https://doi.org/10.1016/J.ENG.2017.01.012
Research |
肠道不同解剖部位的菌群组成及其在结直肠癌中的作用
赵浏阳1,张翔1,左涛1,于君1,2()
1. Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
2. Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
全文: PDF(1097 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

结直肠癌是由遗传突变、表观遗传改变、慢性炎症、饮食和生活方式等多因素引起的多阶段疾病。最新研究表明,肠道菌群是结直肠癌发展过程中的重要参与者。肠道菌群稳态的失调,可通过诱发炎症、调控宿主防御、氧化应激和改变细菌代谢产物等机制促进结直肠癌的发生发展。值得注意的是,肠道横、纵截面上不同解剖部位的驻留菌群有所不同。根据细菌在肠道中定植部位的不同,可将其划分为4 种类型:肠腔共生菌、肠黏膜驻留菌、上皮驻留菌和淋巴组织驻留菌。由于结肠共生细菌的易位与结直肠癌的发展密切相关,结直肠癌相关细菌可有望成为用于结直肠癌诊断的非侵入且准确性高的新型生物标志物。本文旨在总结和概述肠道不同解剖部位中的肠道菌群在结直肠癌发生发展中的作用。

关键词 菌群结直肠癌肠腔共生菌易位生物标志物    
Abstract

Colorectal cancer (CRC) is a multistage disease resulting from complex factors, including genetic mutations, epigenetic changes, chronic inflammation, diet, and lifestyle. Recent accumulating evidence suggests that the gut microbiota is a new and important player in the development of CRC. Imbalance of the gut microbiota, especially dysregulated gut bacteria, contributes to colon cancer through mechanisms of inflammation, host defense modulations, oxidative stress, and alterations in bacterial-derived metabolism. Gut commensal bacteria are anatomically defined as four populations: luminal commensal bacteria, mucus-resident bacteria, epithelium-resident bacteria, and lymphoid tissue-resident commental bacteria. The bacterial flora that are harbored in the gastrointestinal (GI) tract vary both longitudinally and cross-sectionally by different anatomical localization. It is notable that the translocation of colonic commensal bacteria is closely related to CRC progression. CRC-associated bacteria can serve as a non-invasive and accurate biomarker for CRC diagnosis. In this review, we summarize recent findings on the oncogenic roles of gut bacteria with different anatomical localization in CRC progression.

Keywords Microbiota      Colorectal cancer      Luminal commensal bacteria      Translocation      Biomarker     
基金资助: 
通讯作者: 于君     E-mail: junyu@cuhk.edu.hk
最新录用日期:    在线预览日期:    发布日期: 2017-03-02
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Liuyang Zhao
Xiang Zhang
Tao Zuo
Jun Yu
引用本文:   
Liuyang Zhao,Xiang Zhang,Tao Zuo, et al. The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer[J]. Engineering, 2017, 3(1): 90-97.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.01.012     OR     http://engineering.org.cn/EN/Y2017/V3/I1/90
Fig.1  Gut commensal bacteria are anatomically defined as four populations: luminal commensal bacteria, mucus-resident bacteria, epithelium-resident bacteria, and lymphoid tissue-resident commensal bacteria. Many species of bacteria are localized in the lumen and outer mucus layer, while the inner mucus layer is almost sterile. Few species of bacteria can move from the lumen and outer mucus to the intestinal epithelial cells (IECs) and lymphoid tissue.
Populations Major bacteria Refs.
Luminal commensal bacteria Phylum Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia [2225,28,3742]
Order Bacteroidales
Family Rikenellaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, Paraprevotellaceae
Genus Bacteroides, Prevotella, Mucispirillum, Lactobacillus, Ruminococcus, Oscillospira, Sutterella, Desulfovibrio, Fusobacterium
Species Fusobacterium nucleatum
Mucus-resident bacteria Phylum Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia [4042]
Order Bacteroidales
Family Rikenellaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, Paraprevotellaceae
Genus Bacteroides, Prevotella, Mucispirillum, Lactobacillus, Ruminococcus, Oscillospira, Sutterella, Desulfovibrio
Epithelium-resident bacteria Species AIEC, SFB, Enterococcus faecalis, Bacteroides fragilis, Clostridium spp. [4347]
Lymphoid tissue-resident commensal bacteria Species Achromobacter spp., Bordetella spp., Ochrobactrum spp., Serratia spp.
PP-DC: Serratia spp., SFB, Ochrobactrum spp., Alcaligenes spp.
MLN-DC: Pseudomonas spp., Alcaligenes spp.
[48,49]
Tab.1  Composition of colonic commensal bacteria according to anatomical localization.
1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66(1):7–30
https://doi.org/10.3322/caac.21332
2 Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, et alNutrient-gene interaction in colon cancer, from the membrane to cellular physiology. Annu Rev Nutr 2016;36:543–70
https://doi.org/10.1146/annurev-nutr-071715-051039
3 Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genom Hum G 2002;3(1):101–28
https://doi.org/10.1146/annurev.genom.3.022502.103043
4 Garrett WS. Cancer and the microbiota. Science 2015;348(6230):80–6
https://doi.org/10.1126/science.aaa4972
5 Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et alFusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. Epub 2015 Aug 26.
6 Bhattacharya N, Yuan R, Prestwood TR, Penny HL, DiMaio MA, Reticker-Flynn NE, et alNormalizing microbiota-induced retinoic acid deficiency stimulates protective CD8 + T cell-mediated immunity in colorectal cancer. Immunity 2016;45(3):641–55
https://doi.org/10.1016/j.immuni.2016.08.008
7 Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et alBinding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015;42(2):344–55
https://doi.org/10.1016/j.immuni.2015.01.010
8 Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol 2016;70:395–411
https://doi.org/10.1146/annurev-micro-102215-095513
9 Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014;157(1):121–41
https://doi.org/10.1016/j.cell.2014.03.011
10 Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, et alIntestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012;338(6103):120–3
https://doi.org/10.1126/science.1224820
11 Irrazábal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell 2014;54(2):309–20
https://doi.org/10.1016/j.molcel.2014.03.039
12 Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe 2014;15(3):317–28
https://doi.org/10.1016/j.chom.2014.02.007
13 Collins JW, Keeney KM, Crepin VE, Rathinam VAK, Fitzgerald KA, Finlay BB, et alCitrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol 2014;12(9):612–23
https://doi.org/10.1038/nrmicro3315
14 Chung HC, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et alGut immune maturation depends on colonization with a host-specific microbiota. Cell 2012;149(7):1578–93
https://doi.org/10.1016/j.cell.2012.04.037
15 Duerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 2009;31(3):368–76
https://doi.org/10.1016/j.immuni.2009.08.009
16 Geuking MB, Cahenzli J, Lawson MAE, Ng DCK, Slack E, Hapfelmeier S, et alIntestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011;34(5):794–806
https://doi.org/10.1016/j.immuni.2011.03.021
17 Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et alResident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 1998;66(11):5224–31.
18 Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, et alThe intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 2015;43(5):998–1010
https://doi.org/10.1016/j.immuni.2015.09.012
19 Wang X, Yang Y, Moore DR, Nimmo SL, Lightfoot SA, Huycke MM. 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. Gastroenterology 2012;142(3):543–51
https://doi.org/10.1053/j.gastro.2011.11.020
20 Yang Y, Wang X, Huycke T, Moore DR, Lightfoot SA, Huycke MM. Colon macrophages polarized by commensal bacteria cause colitis and cancer through the bystander effect. Transl Oncol 2013;6(5):596–606
https://doi.org/10.1593/tlo.13412
21 Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet 2010;11(1):31–46
https://doi.org/10.1038/nrg2626
22 Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods 2008;5(1):16–8
https://doi.org/10.1038/nmeth1156
23 Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et alA human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464(7285):59–65
https://doi.org/10.1038/nature08821
24 Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14(8):e1002533
https://doi.org/10.1371/journal.pbio.1002533
25 Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29(8):1035–41
https://doi.org/10.1136/gut.29.8.1035
26 He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci USA 1999;96(8):4586–91
https://doi.org/10.1073/pnas.96.8.4586
27 Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 2012;12(7):503–16
https://doi.org/10.1038/nri3228
28 Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et alRegulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461(7268):1282–6
https://doi.org/10.1038/nature08530
29 Rao SS, Kuo B, McCallum RW, Chey WD, DiBaise JK, Hasler WL, et alInvestigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clin Gastroenterol Hepatol 2009;7(5):537–44
https://doi.org/10.1016/j.cgh.2009.01.017
30 Wlodarska M, Kostic AD, Xavier RJ. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 2015;17(5):577–91
https://doi.org/10.1016/j.chom.2015.04.008
31 Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et alAn estimation of the number of cells in the human body. Ann Hum Biol 2013;40(6):463–71
https://doi.org/10.3109/03014460.2013.807878
32 Chin KF, Kallam R, O’Boyle C, MacFie J. Bacterial translocation may influence the long-term survival in colorectal cancer patients. Dis Colon Rectum 2007;50(3):323–30
https://doi.org/10.1007/s10350-006-0827-4
33 Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et alDiversity of the human intestinal microbial flora. Science 2005;308(5728):1635–8
https://doi.org/10.1126/science.1110591
34 Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489(7415):220–30
https://doi.org/10.1038/nature11550
35 Hill DA, Hoffmann C, Abt MC, Du Y, Kobuley D, Kirn TJ, et alMetagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol 2010;3(2):148–58
https://doi.org/10.1038/mi.2009.132
36 Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et alEnterotypes of the human gut microbiome. Nature 2011;473(7346):174–80
https://doi.org/10.1038/nature09944
37 Nosho K, Sukawa Y, Adachi Y, Ito M, Mitsuhashi K, Kurihara H, et alAssociation of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 2016;22(2):557–66
https://doi.org/10.3748/wjg.v22.i2.557
38 Abed J, Emgård JE, Zamir G, Faroja M, Almogy G, Grenov A, et alFap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 2016;20(2):215–25
https://doi.org/10.1016/j.chom.2016.07.006
39 Huang JY, Lee SM, Mazmanian SK. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe 2011;17(4):137–41
https://doi.org/10.1016/j.anaerobe.2011.05.017
40 Corfield AP. Mucins: a biologically relevant glycan barrier in mucosal protection. Bba-Gen Subjects 2015;1850(1):236–52
https://doi.org/10.1016/j.bbagen.2014.05.003
41 Robertson BR, O’Rourke JL, Neilan BA, Vandamme P, On SLW, Fox JG, et alMucispirillum schaedleri gen. nov., sp nov., a spiral-shaped bacterium colonizing the mucus layer of the gastrointestinal tract of laboratory rodents. Int J Syst Evol Microbiol 2005;55(3):1199–204
https://doi.org/10.1099/ijs.0.63472-0
42 Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, et alThe outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun 2015;6:8292
https://doi.org/10.1038/ncomms9292
43 Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et alTreg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500(7461):232–6
https://doi.org/10.1038/nature12331
44 Brook I, Myhal ML. Adherence of Bacteroides fragilis group species. Infect Immun 1991;59(2):742–4.
45 Cossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 2004;304(5668):242–8
https://doi.org/10.1126/science.1090124
46 Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, et alEnhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004;127(1):80–93
https://doi.org/10.1053/j.gastro.2004.03.054
47 Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et alColonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res 2014;20(4):859–67
https://doi.org/10.1158/1078-0432.CCR-13-1343
48 Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, et alIndigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci USA 2010;107(16):7419–24
https://doi.org/10.1073/pnas.1001061107
49 Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, et alInnate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012;336(6086):1321–5
https://doi.org/10.1126/science.1222551
50 Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et alLinking long-term dietary patterns with gut microbial enterotypes. Science 2011;334(6052):105–8
https://doi.org/10.1126/science.1208344
51 Corredoira J, Alonso MP, Coira A, Casariego E, Arias C, Alonso D, et alCharacteristics of Streptococcus bovis endocarditis and its differences with Streptococcus viridans endocarditis. Eur J Clin Microbiol Infect Dis 2008;27(4):285–91
https://doi.org/10.1007/s10096-007-0441-y
52 Lazarovitch T, Shango M, Levine M, Brusovansky R, Akins R, Hayakawa K, et alThe relationship between the new taxonomy of Streptococcus bovis and its clonality to colon cancer, endocarditis, and biliary disease. Infection 2013;41(2):329–37
https://doi.org/10.1007/s15010-012-0314-x
53 Gupta A, Madani R, Mukhtar H. Streptococcus bovis endocarditis, a silent sign for colonic tumour. Colorectal Dis 2010;12(3):164–71
https://doi.org/10.1111/j.1463-1318.2009.01814.x
54 Harrison S, Benziger H, Koerner R. Streptococcus bovis infections, colorectal cancer and liver dysfunction. ANZ J Surg 2011;81(11):762–3
https://doi.org/10.1111/j.1445-2197.2011.05874.x
55 McMahon AJ, Auld CD, Dale BA, Walls AD, McCormick JS. Streptococcus bovis septicaemia associated with uncomplicated colonic carcinoma. Br J Surg 1991;78(7):883–5
https://doi.org/10.1002/bjs.1800780734
56 Wending GK, Metzger PP, Dozois EJ, Chua HK, Krishna M. Unusual bacterial infections and colorectal carcinoma—Streptococcus bovis and Clostridium septicum: report of three cases. Dis Colon Rectum 2006;49(8):1223–7
https://doi.org/10.1007/s10350-006-0576-4
57 Klein RS, Catalano MT, Edberg SC, Casey JI, Steigbigel NH. Streptococcus bovis septicemia and carcinoma of the colon. Ann Intern Med 1979;91(4):560–2
https://doi.org/10.7326/0003-4819-91-4-560
58 Boleij A, Roelofs R, Schaeps RM, Schülin T, Glaser P, Swinkels DW, et alIncreased exposure to bacterial antigen RpL7/L12 in early stage colorectal cancer patients. Cancer 2010;116(17):4014–22
https://doi.org/10.1002/cncr.25212
59 Ellmerich S, Schöller M, Duranton B, Gosse F, Galluser M, Klein JP, et alPromotion of intestinal carcinogenesis by Streptococcus bovis. Carcinogenesis 2000;21(4):753–6
https://doi.org/10.1093/carcin/21.4.753
60 Tjalsma H, Schöller-Guinard M, Lasonder E, Ruers TJ, Willems HL, Swinkels DW. Profiling the humoral immune response in colon cancer patients: diagnostic antigens from Streptococcus bovis. Int J Cancer 2006;119(9):2127–35
https://doi.org/10.1002/ijc.22116
61 Biarc J, Nguyen IS, Pini A, Gosse F, Richert S, Thierse D, et alCarcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S.bovis). Carcinogenesis 2004;25(8):1477–84
https://doi.org/10.1093/carcin/bgh091
62 Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, et alMetagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017;66(1):70–8
https://doi.org/10.1136/gutjnl-2015-309800
63 Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et alFusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013;14(2):207–15
https://doi.org/10.1016/j.chom.2013.07.007
64 Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, et alFusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 2014;74(5):1311–8
https://doi.org/10.1158/0008-5472.CAN-13-1865
65 Dharmani P, Strauss J, Ambrose C, Allen-Vercoe E, Chadee K. Fusobacteriumnucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun 2011;79(7):2597–607
https://doi.org/10.1128/IAI.05118-11
66 Macfarlane S, Woodmansey EJ, Macfarlane GT. Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol 2005;71(11):7483–92
https://doi.org/10.1128/AEM.71.11.7483-7492.2005
67 Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu W, et alGut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 2015;6:8727
https://doi.org/10.1038/ncomms9727
68 Chambers FG, Koshy SS, Saidi RF, Clark DP, Moore RD, Sears CL. Bacteroides fragilistoxin exhibits polar activity on monolayers of human intestinal epithelial cells (T84 cells) in vitro. Infect Immun 1997;65(9):3561–70.
69 Wu S, Rhee KJ, Zhang M, Franco A, Sears CL. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci 2007;120:1944–52
https://doi.org/10.1242/jcs.03455
70 Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM, Mullin JM. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 1999;20(8):1425–32
https://doi.org/10.1093/carcin/20.8.1425
71 Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, et alA possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 2006;12(8):782–6
https://doi.org/10.1111/j.1469-0691.2006.01494.x
72 Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et alThe Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015;60(2):208–15
https://doi.org/10.1093/cid/ciu787
73 Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et alMicrobial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011;6(1):e16393
https://doi.org/10.1371/journal.pone.0016393
74 Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et alStructural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 2012;6(2):320–9
https://doi.org/10.1038/ismej.2011.109
75 Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, et alPolyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA 2011;108(37):15354–9. 10.1073/pnas.1010203108
https://doi.org/10.1073/pnas.1010203108.
76 Housseau F, Sears CL. Enterotoxigenic Bacteroides fragilis (ETBF)-mediated colitis in Min (Apc+/−) mice: a human commensal-based murine model of colon carcinogenesis. Cell Cycle 2010;9(1):3–5
https://doi.org/10.4161/cc.9.1.10352
77 Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, et alVancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010;120(12):4332–41
https://doi.org/10.1172/JCI43918
78 Sonnenburg JL, Chen CT, Gordon JI. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 2006;4(12):e413
https://doi.org/10.1371/journal.pbio.0040413
79 Thompson-Chagoyán OC, Maldonado J, Gil A. Aetiology of inflammatory bowel disease (IBD): role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin Nutr 2005;24(3):339–52
https://doi.org/10.1016/j.clnu.2005.02.009
80 Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 2007;104(18):7617–21
https://doi.org/10.1073/pnas.0700440104
81 Dunne C, Murphy L, Flynn S, O’Mahony L, O’Halloran S, Feeney M, et alProbiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhoek 1999;76(1):279–92
https://doi.org/10.1023/A:1002065931997
82 Johansson MEV, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, et alBacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 2014;63(2):281–91
https://doi.org/10.1136/gutjnl-2012-303207
83 Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 2008;105(39):15064–9
https://doi.org/10.1073/pnas.0803124105
84 Johansson MEV, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol 2016;16(10):639–49
https://doi.org/10.1038/nri.2016.88
85 Johansson ME, Jakobsson HE, Holmén-Larsson J, Schütte A, Ermund A, Rodriguez-Piñeiro AM, et alNormalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 2015;18(5):582–92
https://doi.org/10.1016/j.chom.2015.10.007
86 Johansson MEV. Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins. PLoS One 2012;7(7):e41009
https://doi.org/10.1371/journal.pone.0041009
87 Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et alThe composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2015;16(2):164–77
https://doi.org/10.15252/embr.201439263
88 Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 2008;74(5):1646–8
https://doi.org/10.1128/AEM.01226-07
89 Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2014;14(3):141–53
https://doi.org/10.1038/nri3608
90 Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001;294(5549):2155–8
https://doi.org/10.1126/science.1065718
91 Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, et alThe key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009;31(4):677–89
https://doi.org/10.1016/j.immuni.2009.08.020
92 Rolhion N, Darfeuille-Michaud A. Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis 2007;13(10):1277–83
https://doi.org/10.1002/ibd.20176
93 Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, et alCulture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 2007;1(5):403–18
https://doi.org/10.1038/ismej.2007.52
94 Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J, et alAssociation between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 1998;115(2):281–6
https://doi.org/10.1016/S0016-5085(98)70194-5
95 Dreux N, Denizot J, Martinez-Medina M, Mellmann A, Billig M, Kisiela D, et alPoint mutations in FimH adhesin of Crohn’s disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response. PLoS Pathog 2013;9(1):e1003141
https://doi.org/10.1371/journal.ppat.1003141
96 Eaves-Pyles T, Allen CA, Taormina J, Swidsinski A, Tutt CB, Jezek GE, et alEscherichia coli isolated from a Crohn’s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol 2008;298(5–6):397–409
https://doi.org/10.1016/j.ijmm.2007.05.011
97 Subramanian S, Rhodes JM, Hart CA, Tam B, Roberts CL, Smith SL, et alCharacterization, of epithelial IL8 response to inflammatory bowel disease mucosal E. coli and its inhibition by mesalamine. Inflamm Bowel Dis 2008;14(2):162–75
https://doi.org/10.1002/ibd.20296
98 Mimouna S, Goncalves D, Barnich N, Darfeuille-Michaud A, Hofman P, Vouret-Craviari V. Crohn disease-associated Escherichia coli promote gastrointestinal inflammatory disorders by activation of HIF-dependent responses. Gut Microbes 2011;2(6):335–46
https://doi.org/10.4161/gmic.18771
99 Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013;12(1):86
https://doi.org/10.1186/1476-4598-12-86
100 Mcwilliams M, Phillips-Quagliata JM, Lamm ME. Characteristics of mesenteric lymph-node cells homing to gut-associated lymphoid-tissue in syngeneic mice. J Immunol 1975;115(1):54–8.
101 Kunisawa J, Kiyono H. Alcaligenes is commensal bacteria habituating in the gut-associated lymploid tissue for the regulation of intestinal IgA responses. Front Immunol 2012;3:65
https://doi.org/10.3389/fimmu.2012.00065
102 Fung TC, Bessman NJ, Hepworth MR, Kumar N, Shibata N, Kobuley D, et alLymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism. Immunity 2016;44(3):634–46
https://doi.org/10.1016/j.immuni.2016.02.019
103 Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med 2015;372(15):1441–52
https://doi.org/10.1056/NEJMra1403718
104 Deitch EA. Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings? Surgery 2002;131(3):241–4
https://doi.org/10.1067/msy.2002.116408
105 Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et alAdenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012;491(7423):254–8
https://doi.org/10.1038/nature11465
106 Elinav E, Nowarski R, Thaiss CA, Hu B, Jin CC, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 2013;13(11):759–71
https://doi.org/10.1038/nrc3611
107 Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5(10):749–59
https://doi.org/10.1038/nri1703
108 Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang W, et alSphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 2013;23(1):107–20
https://doi.org/10.1016/j.ccr.2012.11.013
109 Madia F, Grossi V, Peserico A, Simone C. Updates from the intestinal front line: autophagic weapons against inflammation and cancer. Cells 2012;1(3):535–57
https://doi.org/10.3390/cells1030535
110 Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol 2008;32(3):609–17
https://doi.org/10.3892/ijo.32.3.609
111 Li Y, Kundu P, Seow SW, de Matos CT, Aronsson L, Chin KC, et alG ut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 2012;33(6):1231–8
https://doi.org/10.1093/carcin/bgs137
112 Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014;12(10):661–72
https://doi.org/10.1038/nrmicro3344
113 Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, et alDiet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 2013;98(1):111–20. 10.3945/ajcn.112.056689
https://doi.org/10.3945/ajcn.112.056689.
114 Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et alHigh-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 2011;93(5):1062–72
https://doi.org/10.3945/ajcn.110.002188
115 Loh YH, Jakszyn P, Luben RN, Mulligan AA, Mitrou PN, Khaw KT. N-nitroso compounds and cancer incidence: the European Prospective Investigation into Cancer and Nutrition (EPIC)- Norfolk Study. Am J Clin Nutr 2011;93(5):1053–61
https://doi.org/10.3945/ajcn.111.012377
116 Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res 2012;56(1):184–96
https://doi.org/10.1002/mnfr.201100542
117 Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett 2009;299(2):128–34
https://doi.org/10.1111/j.1574-6968.2009.01750.x
118 Roediger WE, Moore J, Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci 1997;42(8):1571–9
https://doi.org/10.1023/A:1018851723920
119 Di Martino ML, Campilongo R, Casalino M, Micheli G, Colonna B, Prosseda G. Polyamines: emerging players in bacteria-host interactions. Int J Med Microbiol 2013;303(8):484–91
https://doi.org/10.1016/j.ijmm.2013.06.008
120 Pegg AE. Toxicity of polyamines and their metabolic products. Chem Res Toxicol 2013;26(12):1782–800
https://doi.org/10.1021/tx400316s
121 Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 2008;67(3):253–6
https://doi.org/10.1017/S002966510800712X
122 Homann N. Alcohol and upper gastrointestinal tract cancer: the role of local acetaldehyde production. Addict Biol 2001;6(4):309–23
https://doi.org/10.1080/13556210020077028
123 Lescut D, Colombel JF, Vincent P, Cortot A, Fournier L, Quandalle P, et alBacterial translocation in colorectal cancers. Gastroenterol Clin Biol 1990;14(11):811–4.
124 Klein GL, Petschow BW, Shaw AL, Weaver E. Gut barrier dysfunction and microbial translocation in cancer cachexia: a new therapeutic target. Curr Opin Support Palliat Care 2013;7(4):361–7
https://doi.org/10.1097/SPC.0000000000000017
125 Liang JQ, Chiu J, Chen Y, Huang Y, Higashimori A, Fang JY, et alFecal bacteria act as novel biomarkers for non-invasive diagnosis of colorectal cancer. Clin Cancer Res. Epub 2016 Oct 3
https://doi.org/10.1158/1078-0432.CCR-16-1599
126 Wong SH, Kwong TN, Chow TC, Luk AK, Dai RZ, Nakatsu G, et alQuantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut. Epub 2016 Oct 24
https://doi.org/10.1136/gutjnl-2016-312766
127 Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, et alCould gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget 2016;7(29):46158–72.
128 Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14(2):195–206
https://doi.org/10.1016/j.chom.2013.07.012
[1] Si Qin, De-Xing Hou. The Biofunctions of Phytochemicals and Their Applications in Farm Animals: The Nrf2/Keap1 System as a Target[J]. Engineering, 2017, 3(5): 738-752.
[2] Yulan Wang, Baohong Wang, Junfang Wu, Xiangyang Jiang, Huiru Tang, Ole H. Nielsen. Modulation of Gut Microbiota in Pathological States[J]. Engineering, 2017, 3(1): 83-89.
[3] Guishuai Lv, Ningtao Cheng, Hongyang Wang. The Gut Microbiota, Tumorigenesis, and Liver Diseases[J]. Engineering, 2017, 3(1): 110-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering