Please wait a minute...
投稿  |   English  | 
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (1) : 83-89
Research |
王玉兰1,2(),王保红2,吴俊芳1,江向洋2,唐惠儒3,Nielsen Ole H.4
1. Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
2. National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
3. State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University, Collaborative Innovation Center of Genetics and Development, Shanghai International Center for Molecular Phenomics, Shanghai 200433, China
4. Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen 1017, Denmark
全文: PDF(628 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息

人类微生态是寄居在人体中的微生物聚集体,且主要存在于胃肠道(GIT) 中。肠道微生态随着人体发育而演化,并在人类健康和疾病中起着重要作用。近年来,由于微生态会影响宿主代谢、生理学和免疫系统发育,而且微生态紊乱可能导致许多疾病,其越来越受到人们的关注。肠道微生态可能与恶性肿瘤有一定联系,如胃癌和结直肠癌;也可能与其他一些疾病有关,如非酒精性脂肪肝(NAFLD)、被称为工业化世界“生活方式疾病”的肥胖和糖尿病、冠心病以及中枢神经系统紊乱。虽然分子技术革命为我们更准确地研究肠道微生态提供了必要的工具,但是我们需要更精确地阐明其与某些人类疾病病理变化的关系,明确微生态在不同疾病中的作用是新的治疗策略发展的基础。本文概述了肠道微生态对人类健康的重要影响以及调整肠道菌群结构的潜在用途,如菌群移植用于治疗耐药艰难梭菌(C. difficile) 的感染。通过微生态干预调整肠道区域以改善人类健康的概念虽刚刚兴起,但其治疗意义显著。因此,抑制有害菌、促进有益菌可能会保护人类健康,并且这些努力将为探索发展更加合理的治疗方案打下基础。

关键词 肠道菌群疾病菌群调节    

The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT). Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic fatty liver disease (NAFLD); obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more accurately, we need to elucidate the relationships between the gut microbiota and several human pathologies more precisely, as understanding the impact that the microbiota plays in various diseases is fundamental for the development of novel therapeutic strategies. Therefore, the aim of this review is to provide the reader with an updated overview of the importance of the gut microbiota for human health and the potential to manipulate gut microbial composition for purposes such as the treatment of antibiotic-resistant Clostridium difficile (C. difficile) infections. The concept of altering the gut community by microbial intervention in an effort to improve health is currently in its infancy. However, the therapeutic implications appear to be very great. Thus, the removal of harmful organisms and the enrichment of beneficial microbes may protect our health, and such efforts will pave the way for the development of more rational treatment options in the future.

Keywords Gut microbes      Diseases      Microbial modulation     
通讯作者: 王玉兰     E-mail:
最新录用日期:    在线预览日期:    发布日期: 2017-03-02
Yulan Wang
Baohong Wang
Junfang Wu
Xiangyang Jiang
Huiru Tang
Ole H. Nielsen
Yulan Wang,Baohong Wang,Junfang Wu, et al. Modulation of Gut Microbiota in Pathological States[J]. Engineering, 2017, 3(1): 83-89.
网址:     OR
Fig.1  Summary of the role of gut microbes and their modulation in a pathological state.
1 Xu J, Gordon JI. Honor thy symbionts. Proc Natl AcadSci USA 2003;100(18):10452–9
2 Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14(8):e1002533
3 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et alet alA metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012;490(7418):55–60
4 Aagaard K,,Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. SciTransl Med 2014;6(237):237ra65.
5 Ardissone AN, de la Cruz DM, Davis-Richardson AG, Rechcigl KT, Li N, Drew JC, et alMeconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One 2014;9(3):e90784. Erratum in:PLoS One 2014;9(6):e101399
6 Bobitt JR, Ledger WJ. Unrecognized amnionitis and prematurity: a preliminary report. JReprod Med 1977;19:8–12.
7 Moles L, Gómez M, Heilig H, Bustos G, Fuentes S, de Vos W, et alBacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One 2013;8(6):e66986
8 Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: a phylogenetic perspective. Science 2015;350(6261):aac9323
9 Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489(7415):220–30
10 Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol 2011;12(1):5–9
11 Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N,et alThe composition of the gut microbiota throughout life, with an emphasis on early life. MicrobEcol Health Dis 2015;26:26050
12 Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. NEngl J Med 2016;375(24):2369–79
13 Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AGP, et alCommensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat Immunol 2004;5(1):104–12
14 Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 2016;8:42
15 Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe Eubacteriumhallii also contributes to intestinal propionate formation. Front Microbiol 2016;7:713
16 Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et alIndigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161(2):264–76. Erratum in:Cell 2015;163(1):258
17 Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et alMetabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl AcadSci USA 2009;106(10):3698–703
18 Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et alSymbiotic gut microbes modulate human metabolic phenotypes. Proc Natl AcadSci USA 2008;105(6):2117–22
19 Antharam VC, McEwen DC, Garrett TJ, Dossey AT, Li EC, Kozlov AN, et alAn integrated metabolomic and microbiome analysis identified specific gut microbiota associated with fecal cholesterol and coprostanol in Clostridium difficile infection. PLoS One 2016;11(2):e0148824
20 O’Connor A, O’Morain CA, Ford AC. Population screening and treatment ofHelicobacter pylori infection. Nat Rev Gastroenterol Hepatol. Epub 2017Jan5
21 Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, et alProbiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun 2016;7:12365
22 Klein RS, Recco RA, Catalano MT, Edberg SC, Casey JI, Steigbigel NH. Association of Streptococcus bovis with carcinoma of the colon. NEngl J Med 1977;297(15):800–2
23 Ruoff KL, Miller SI, Garner CV, Ferraro MJ, Calderwood SB. Bacteremia with Streptococcus bovis and Streptococcus salivarius: clinical correlates of more accurate identification of isolates. JClin Microbiol 1989;27(2):305–8.
24 Huang JQ, Zheng GF, Sumanac K, Irvine EJ, Hunt RH. Meta-analysis of the relationship between cagAseropositivity and gastric cancer. Gastroenterology 2003;125(6):1636–44
25 Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, et alEnhancedEscherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004;127(1):80–93
26 Arthur JC, Jobin C. The struggle within: microbial influences on colorectal cancer. Inflamm Bowel Dis 2011;17(1):396–409
27 Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int 2017;37(Suppl 1):81–4
28 Seto WK, Yuen MF. Nonalcoholic fatty liver disease in Asia: emerging perspectives. JGastroenterol 2017;52(2):164–74
29 Henao-Mejia J, Elinav E,Jin C,Hao L,Mehal WZ,Strowig T,et alet alInflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012;482(7384):179–85
30 Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, et alAltered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 2016;6:32002
31 Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, et alIntestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 2013;62(12):1787–94
32 Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, et alIntestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013;58(1):120–7
33 Raman M,,Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S,et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin. Gastroenterol Hepatol 2013;11(7):868–75.e1–3.
34 Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et alCharacterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 2013;57(2):601–9
35 Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, et alThe severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016;63(3):764–75
36 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444(7122):1027–31
37 Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et alAcetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 2016;534(7606):213–7
38 Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 2004;92(3):521–6
39 Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et alMetabolicendotoxemia initiates obesity and insulin resistance. Diabetes 2007;56(7):1761–72
40 Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et alRegulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461(7268):1282–6
41 Ruiz AG, Casafont F, Crespo J, Cayón A, Mayorga M, Estebanez A, et alLipopolysaccharide-binding protein plasma levels and liver TNF-α gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes Surg 2007;17(10):1374–80
42 Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 2007;47(4):571–9
43 Sabaté JM, Jouët P, Harnois F, Mechler C, Msika S, Grossin M, et alet alHigh prevalence of small intestinal bacterial overgrowth in patients with morbid obesity: a contributor to severe hepatic steatosis. Obes Surg 2008;18(4):371–7
44 Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, et alIncreased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009;49(6):1877–87
45 Harte AL, da Silva NF, Creely SJ, McGee KC, Billyard T, Youssef-Elabd EM, et alElevated endotoxin levels in non-alcoholic fatty liver disease. JInflamm(Lond) 2010;7:15
46 Kapil S, Duseja A, Sharma BK, Singla B, Chakraborti A, Das A, et alSmall intestinal bacterial overgrowth and toll like receptor signaling in patients with nonalcoholic fatty liver disease. JGastroenterol Hepatol 2016;31(1):213–21
47 Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, et alHyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab 2012;16(1):44–54
48 Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et alThe gut microbiota as an environmental factor that regulates fat storage. Proc Natl AcadSci USA 2004;101(44):15718–23
49 Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl AcadSci USA 2005;102(31):11070–5
50 Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008;3(4):213–23
51 Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et alGut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341(6150):1241214
52 Zhang C, Yin A, Li H, Wang R, Wu G, Shen J, et alet alDietary modulation of gut microbiota contributes to alleviation of both genetic and simple obesity in children. EBioMedicine 2015;2(8):968–84
53 Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Mechanisms of obesity in Prader-Willi syndrome. Pediatr Obes.Epub2016 Nov 10
54 Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014;63(9):1513–21
55 Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et alGut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 2010;5(2):e9085
56 Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et alGut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013;498(7452):99–103
57 Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF, Shanahan F, et alRegulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl AcadSci USA 2014;111(20):7421–6
58 Ghazalpour A, Cespedes I, Bennett BJ, Allayee H. Expanding role of gut microbiota in lipid metabolism. CurrOpin Lipidol 2016;27(2):141–7
59 Kishino S, Takeuchi M, Park SB, Hirata A, Kitamura N, Kunisawa J, et alPolyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Natl AcadSci USA 2013;110(44):17808–13
60 Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V, et alHuman oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl AcadSci USA 2011;108(Suppl 1):4592–8
61 Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JAM, et alThe gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 2015;117(9):817–24
62 Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, et alGut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011;472(7341):57–63
63 Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z, Gregory JC, et alγ-Butyrobetaine is a pro-atherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab 2014;20(5):799–812
64 Bennett BJ, de AguiarVallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, et alTrimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab 2013;17(1):49–60
65 Shih DM, Wang Z, Lee R, Meng Y, Che N, Charugundla S, et alFlavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res 2015;56(1):22–37
66 Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL, et alThe TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 2015;10(3):326–38
67 Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et alNon-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015;163(7):1585–95
68 Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci 2016;39(11):763–81
69 Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A,et alNormal gut microbiota modulates brain development and behavior. Proc Natl AcadSci USA 2011;108(7):3047–52
70 Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. NeurogastroenterolMotil 2011;23(3):255–64.e119
71 Liu J, Sun J, Wang F, Yu X, Ling Z, Li H,et alNeuroprotective effects of Clostridium butyricum against vascular dementia in mice via metabolic butyrate. Biomed Res Int 2015;2015:412946.
72 Ait-Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, et alProbiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil 2014;26(4):510–20
73 Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offsprin g. Cell 2016;165(7):1762–75
74 Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et alMicrobiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013;155(7):1451–63
75 Borrelli L, Aceto S, Agnisola C, De Paolo S, Dipineto L, Stilling RM, et alProbiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci Rep 2016;6:30046
76 Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et alIngestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagusnerve. Proc Natl AcadSci USA 2011;108(38):16050–5
77 Möhle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, et alet alLy6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep 2016;15(9):1945–56
78 Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016;13(4):3391–6
79 Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et alet alColonic bacterial composition in Parkinson’s disease. Movement Disord 2015;30(10):1351–60
80 Wu S, Yi J, Zhang Y, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep 2015;3(4):e12356
81 Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. JAppl Microbiol 2012;113(2):411–7
82 Brenner SR. Blue-green algae or cyanobacteria in the intestinal micro-flora may produce neurotoxins such as beta-N-methylamino-L-alanine (BMAA) which may be related to development of amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson-dementia-complex in humans and equine motor neuron disease in horses. Med Hypotheses 2013;80(1):103
83 Amato KR, Yeoman CJ, Cerda G, Schmitt CA, Cramer JD, Miller MEB, et alVariable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome 2015;3:53
84 Lin H, An Y, Hao F, Wang Y, Tang H. Correlations of fecal metabonomic and microbiomic changes induced by high-fat diet in the pre-obesity state. Sci Rep 2016;6:21618
85 David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et alDiet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505(7484):559–63
86 Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et alPopulation-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016;352(6285):565–9
87 Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, et alFaecalibacteriumprausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl AcadSci USA 2008;105(43):16731–6
88 Osborn DA, Sinn JK. Prebiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database SystRev 2007;(4):CD006475.10.1002/14651858.CD006475.pub2
89 Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et alet alDominant and diet-responsive groups of bacteria within the human colonic microbiota. ISMEJ 2011;5(2):220–30
90 Kleessen B, Sykura B, Zunft HJ, Blaut M. Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr 1997;65(5):1397–402.
91 Brüssow H. Biome engineering-2020 . Microb Biotechnol 2016;9(5):553–63
92 Cox MJ, Huang YJ, Fujimura KE, Liu JT, McKean M, Boushey HA, et alLactobacilluscasei abundance is associated with profound shifts in the infant gut microbiome. PLoS One 2010;5(1):e8745
93 Korpela K, Salonen A, Virta LJ, Kumpu M, Kekkonen RA, de Vos WM. Lactobacillusrhamnosus GG intake modifies preschool children’s intestinal microbiota, alleviates penicillin-associated changes, and reduces antibiotic use. PLoS One 2016;11(4):e0154012
94 Zhao Y, Wu J, Li JV, Zhou NY, Tang H, Wang Y. Gut microbiota composition modifies fecal metabolic profiles in mice. J Proteome Res 2013;12(6):2987–99
95 Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl AcadSci USA 2011;108(Suppl 1):4554–61
96 Karlsson FH, Ussery DW, Nielsen J, Nookaew I. A closer look at Bacteroides: phylogenetic relationship and genomic implications of a life in the human gut. Microb Ecol 2011;61(3):473–485
97 Jyothi KS, Malini KS, Mamata M, Rao BS. Anti-bacterial response of twelve plants of folk-lore medicine used against diabetismellitus. J Phytol Res 2007;20:161–70.
98 Eiseman B, Silen W, Bascom GS, Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958;44(5):854–9.
99 van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et alet alDuodenal infusion of donor feces for recurrent Clostridium difficile. NEngl J Med 2013;368(5):407–15
100 Lee CH, Steiner T, Petrof EO, Smieja M, Roscoe D, Nematallah A, et alFrozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. JAMA 2016;315(2):142–9
101 Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 2013;4(2):125–35
102 Weingarden A, González A, Vázquez-Baeza Y, Weiss S, Humphry G, Berg-Lyons D, et alet alDynamic changes in short-and long-term bacterial composition following fecal microbiota transplantation for recurrent Clostridium difficile infection. Microbiome 2015;3:10
103 Millan B, Park H, Hotte N, Mathieu O, Burguiere P, Tompkins TA, et alFecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficileinfection. Clin Infect Dis 2016;62(12):1479–86
[1] Si Qin, De-Xing Hou. The Biofunctions of Phytochemicals and Their Applications in Farm Animals: The Nrf2/Keap1 System as a Target[J]. Engineering, 2017, 3(5): 738-752.
[2] Guishuai Lv, Ningtao Cheng, Hongyang Wang. The Gut Microbiota, Tumorigenesis, and Liver Diseases[J]. Engineering, 2017, 3(1): 110-114.
[3] John B. Troy. Visual Prostheses: Technological and Socioeconomic Challenges[J]. Engineering, 2015, 1(3): 288-291.
Full text



国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社