Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 299-307     https://doi.org/10.1016/J.ENG.2017.03.002
Research |
生物质垃圾制沼气技术综述
Achinas Spyridon1(),Achinas Vasileios2,Willem Euverink Gerrit Jan1
1. Faculty of Science and Engineering, University of Groningen, Groningen 9747 AG, the Netherlands
2. Union of Agricultural Cooperatives of Monofatsi, Heraklion 700 16, Greece
全文: PDF(1252 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

当今时代,人类对化石燃料的不合理利用和温室气体对环境的影响,使研究者关注有机资源和垃圾的可持续能源转化。全球的能源需求非常大,主要能源来自化石能源。目前的研究认为厌氧消化是一种高效的可替代技术,其既能产生生物燃料,又能可持续地处理垃圾。在沼气工业,为了促进沼气的生成和提高质量,有几种不同的技术趋势。然而,投资厌氧消化的成功取决于原料成本低和沼气使用范围广( 热能、电能和燃料)。在欧洲能源市场,沼气的生产一直在增长,为生物能源的发展提供了一条经济的替代选择。本文的目的是对由木质纤维素类的生物垃圾生产沼气进行综述,为沼气经济提供重要信息。

关键词 厌氧消化沼气可持续能源木质纤维素垃圾微生物生态学    
Abstract

The current irrational use of fossil fuels and the impact of greenhouse gases on the environment are driving research into renewable energy production from organic resources and waste. The global energy demand is high, and most of this energy is produced from fossil resources. Recent studies report that anaerobic digestion (AD) is an efficient alternative technology that combines biofuel production with sustainable waste management, and various technological trends exist in the biogas industry that enhance the production and quality of biogas. Further investments in AD are expected to meet with increasing success due to the low cost of available feedstocks and the wide range of uses for biogas (i.e., for heating, electricity, and fuel). Biogas production is growing in the European energy market and offers an economical alternative for bioenergy production. The objective of this work is to provide an overview of biogas production from lignocellulosic waste, thus providing information toward crucial issues in the biogas economy.

Keywords Anaerobic digestion      Biogas      Sustainable energy      Lignocellulosic waste      Microbial ecology     
基金资助: 
通讯作者: Achinas Spyridon     E-mail: s.achinas@rug.nl
最新录用日期:    在线预览日期:    发布日期: 2017-06-30
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Spyridon Achinas
Vasileios Achinas
Gerrit Jan Willem Euverink
引用本文:   
Spyridon Achinas,Vasileios Achinas,Gerrit Jan Willem Euverink. A Technological Overview of Biogas Production from Biowaste[J]. Engineering, 2017, 3(3): 299-307.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.002     OR     http://engineering.org.cn/EN/Y2017/V3/I3/299
Calendar year Total (toe) Calendar year Total (toe)
2009 7?934 2013 13?491
2010 8?504 2014 13?770
2011 10?341 2015 14?000
2012 12?044 2016a 14?120
Tab.1  Biogas production for heat and electricity in the European Union [14].
Country 2006 2009 2013
Germany 1665 3675 6716
UK 1498 1637 1824
France 298 453 465
Italy 383 410 1815
The Netherlands 141 248 302
Tab.2  The top five biogas producers in Europe (in toe) [13,15,16].
Type Biogas yield per ton fresh matter (m3) Electricity produced per ton fresh matter a(kW·h)
Cattle dung 55–68 122.5
Chicken litter/dung 126 257.3
Fat 826–1200 1687.4
Food waste (disinfected) 110 224.6
Fruit wastes 74 151.6
Horse manure 56 114.3
Maize silage 200/220 409.6
Municipal solid waste 101.5 207.2
Pig slurry 11–25 23.5
Sewage sludge 47 96.0
Tab.3  Comparison of biogas yield and electricity produced from different potential substrates [18,19].
Fig.1  Typical feedstocks in biogas plants in 2010 in Germany. (Adopted from Ref. [20])
Fig.2  Diagram of the main components of lignocellulose: cellulose, hemicelluloses, and lignin [27].
Fig.3  Molecular chain structure of cellulose [36].
Fig.4  Molecular chain structure of hemicellulose [36].
Fig.5  Basic structural unit of lignin [36].
Fig.6  Pretreatment can increase the rate of AD (Case b) or increase the methane yield (Case c).
Technology Advantages Disadvantages Source
Milling

No production of inhibitors (e.g., furfural and HMF)
Increased methane (5%–25%)

High energy requirements
High maintenance cost

[5664]
Extrusion

Increased surface area

Increased energy demand
High maintenance cost

[5663]
Steam pretreatment/steam explosion

Increased cellulose fiber reactivity

Risk of producing inhibitors (e.g., furfural and HMF)
Less digestible biomass because of lignin condensation
Precipitation phenomena

[6466]
Liquid hot water

Solubilized hemicellulose and lignin products are present in lower concentrations
Reduced risk of producing inhibitors such as furfural
Increased enzyme accessibility

High heat demand
Only effective up to a certain temperature

[67,68]
Microwave

4%–7% more biogas produced than untreated

[69]
Diluted or strong acid pretreatment

Solubilizes hemicellulose
Methanogens are capable of adapting to inhibiting compounds

High cost of acids
Risk of forming inhibiting compounds
Corrosion problems

[70,71]
Alkaline
pretreatment

Hemicellulose and parts of lignin are solubilized
Increased methane production

Risk of producing inhibitors
High alkali concentration in reactor

[72]
Tab.4  Advantages and disadvantages of different pretreatment technologies.
Fig.7  Standard multiple-stage AD system. (Adopted from Ref. [77])
Fig.8  Scheme for the bioindustry and research gap.
Issues Focus of R&D efforts
Use of enzymes, bacteria, or catalysts

Increased range of applications
High production cost

Utility requirements

Consumption of electrical power
Surplus of oxygen and hydrogen
High pressure and heat

Technology

Pretreatment
Multiple-stage technology
Advanced techniques (high pressure)
Microscale technology

Fuel properties

Enriched-methane biogas
Less hydrogen sulfide

Tab.5  Current issues and prospective R&D efforts to address the main research gaps.
Fig.9  The number of biogas plants and total installed capacity in Europe during the period 2010–2014. (Adopted from Ref. [110])
Country Number of biogas plants
Germany ~8000
Italy 1491
UK 813
France 736
Switzerland 633
Tab.6  Biogas plants in the top five biogas producers in Europe (toe) [110].
1 International Energy Agency. World energy outlook special report 2015: Energy and climate change. Final report. Paris: OECD/IEA; 2015.
2 United Nations Environment Programme. The emissions gap report 2014: A UNEP synthesis report. Final report. Nairobi: UNEP; 2014.
3 van Foreest F. Perspectives for biogas in Europe. Oxford: Oxford Institute for Energy Studies; 2012.
4 []Nishio N, Nakashimada Y. Recent development of anaerobic digestion processes for energy recovery from wastes. J Biosci Bioeng 2007;103(2):105–12.
5 EurObserv’ER. The state of renewable energies in Europe. Report. Paris: EurObserv’ER; 2014.
6 Wagner L. Trends from the use of biogas technology in Germany. In: Proceedings of the VIV Asia Biogas Conference ; 2015 Mar 12; Bangkok, Thailand; 2015.
7 Edita Vagonyte. Biogas & biomethane in Europe. Work package 4: Biogas & Biomethane. Report. Brussels: European Biomass Association; 2015.
8 Soetaert W, Vandamme EJ. Biofuels in perspective. In: Soetaert W, Vandamme EJ, editors Biofuels.New Jersey: John Wiley & Sons, Ltd.; 2009. p. 1–8.
9 Lin Y, Tanaka S. Ethanol fermentation from biomass resources: Current state and prospects. Appl Microbiol Biotechnol 2006;69(6):627–42.
10 Weiland P, Verstraete W, van Haandel A. Biomass digestion to methane in agriculture: A successful pathway for the energy production and waste treatment worldwide. In: Soetaert W, Vandamme EJ, editors Biofuels.New Jersey: John Wiley & Sons, Ltd.; 2009. p. 171–96.
11 Deublein D, Steinhauser A. History and status to date in other countries. In: Deublein D, Steinhauser A, editors Biogas from waste and renewable resources : An introduction. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 35–43.
12 Abbasi T, Tauseef SM, Abbasi SA. Biogas and global warming. In: Abbasi T, Tauseef SM, Abbasi SA, editors Biogas energy. New York: Springer; 2012, p. 25–34.
13 European Biogas Association. Biogas: Simply the best. Report. Brussels: European Biogas Association. 2011.
14 [Flach B, Lieberz S, Rondon M, Williams B, Teike C. EU-28 biofuels annual 2015. Report. Washington, DC: USDA Foreign Agricultural Service ; 2015 Jul. Report No.: NL5028.
15 EurObserv’ER. Biogas barometer. Study report. Brussels: Intelligent Energy Europe; 2014.
16 European Biomass Association. A biogas road map for Europe. Report. Brussels: European Biomass Association; 2009.
17 BIOGAS3 Consortium. European legislative and financial framework for the implementation of small-scale biogas plants in agro-food & beverage companies. Brussels: Intelligent Energy Europe; 2014. Grant agreement: IEE/13/477/SI2.675801.
18 Stucki M, Jungbluth N, Leuenberger M. Life cycle assessment of biogas production from different substrates. Final report. Bern: Federal Department of Environment, Transport, Energy and Communications , Federal Office of Energy; 2011Dec.
19 Sustainable Energy Authority of Ireland. Gas yields table. Dublin: Sustainable Energy Authority of Ireland; 2002.
20 Fachagentur Nachwachsende Rohstoffe. Bioenergy in Germany: Facts and figures. Report. Bonn: Federal Ministry of Food, Agriculture and Consumer Protection; 2012Jan.
21 Braun R. Anaerobic digestion: A multi-faceted process for energy, environmental management and rural development. In: Ranalli P, editor Improvement of crop plants for industrial end uses. Dordrecht: Springer; 2007. p. 335–415.
22 Braun R. Biogas—Methane treatment of organic waste. Wien: Springer; 1982. Germany.
23 [Zubr J. Methanogenic fermentation of fresh and ensiled plant materials. Biomass 1986;11(3):159–71.
24 Fachagentur Nachwachsende Rohstoffe. Biogas: Base line data for Germany. Gülzow: Fachagentur Nachwachsende Rohstoffe; 2008. Germany.
25 ATV-DVWK. Thermische, chemische und biochemische Desintegrationsverfahren: 3. Arbeitsbericht der Arbeitsgruppe AK-1.6 “Klärschlammdesintegration”. Corresp Wastewater 2003;50:796–804. Germany.
26 Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi MST, Matthiasson B. Effect of particle size on biogas yield from sisal fibre waste. Renew Energy 2006;31(14):2385–92.
27 Philbrook A, Alissandratos A, Easton CJ. Biochemical processes for generating fuels and commodity chemicals from lignocellulosic biomass, environmental biotechnology. In: Marian P, editor New approaches and prospective applications. Rijeka: InTech; 2013. p. 39–64.
28 Iqbal HMN, Ahmed I, Zia MA, Irfan M. Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2011;2(3):149–56.
29 Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 2009;48(8):3713–29.
30 Calvo-Flores FG, Dobado JA. Lignin as renewable raw material. ChemSusChem 2010;3(11):1227–35.
31 Jiang G, Nowakowski DJ, Bridgwater AV. A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 2010;498(1–2):61–6.
32 Menon V, Rao M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Pror Energy Combust Sci 2012;38(4):522–50.
33 Bertero M, de la Puente G, Sedran U. Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 2012;95:263–71.
34 Iqbal HMN, Kyazze G, Keshavarz T. Advances in valorization of lignocellulosic materials by bio-technology: An overview. BioResources 2013;8(2):3157–76.
35 Prassad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycling 2007;50(1):1–39.
36 Ratnaweeraa DR, Saha D, Pingali SV, Labbé N, Naskar AK, Dadmun M. The impact of lignin source on its self-assembly in solution. RSC Adv 2015;5(82):67258–66.
37 Fengel D, Wegener G. Wood: Chemistry, ultrastructure, reactions. Berlin: De Gruyter; 1984.
38 Deguchi S, Mukai SA, Tsudome M, Horikoshi K. Facile generation of fullerene nanoparticles by hand-grinding. Adv Mater 2006;18(6):729–32.
39 Klemm D, Schmauder HP, Heinze T. Cellulose. Biopolymers Online 2005;6:277–312.
40 Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE. Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 2005;124(1):1081–99.
41 Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol 2003;30(5):279–91.
42 Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasic R. Hemicelluloses for fuel ethanol: A review. Bioresour Technol 2010;101(13):4775–800.
43 Sun R, Sun XF, Tomkinson J. Hemicelluloses and their derivatives. In: Gatenholm P. Tenkanen M, editors Hemicelluloses: Science and technology . Washington, DC: American Chemical Society; 2004. p. 2–22.
44 Ebringerová A, Hromádková Z, Heinze T. Hemicellulose. In: Heinze T, editor Polysaccharides I. Structure, characterization and use. Berlin: Springer; 2005. p.1–67.
45 Gray MC, Converse AO, Wyman CE. Sugar monomer and oligomer solubility. Data and predictions for application to biomass hydrolysis. Appl Biochem Biotechnol 2003;105(1):179–93.
46 Bobleter O. Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 1994;19(5):797–841.
47 Garrote G, Dominguez H, Parajo JC. Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 1999;57(3):191–202.
48 Balaban M, Ucar G. The effect of the duration of alkali treatment on the solubility of polyoses. Turk J Agric For 1999;23(6):667–71.
49 Lawther JM, Sun R, Banks WB. Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicellulose. J Appl Polym Sci 1996;60(11):1827–37.
50 Sweet MS, Winandy JE. Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine. Holzforschung 1999;53(3):311–7.
51 Mielenz JR. Ethanol production from biomass: Technology and commercialization status. Curr Opin Microbiol 2001;4(3):324–9.
52 Grabber JH. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 2005;45(3):820–31.
53 Demirbaş A. Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources 2005;27(4):327–37.
54 Ladisch R, Mosier NS, Youngmi KIM, Ximenes E, Hogsett D. Converting cellulose to biofuels. Chem Eng Prog 2010;106(3):56–63.
55 Yang B, Wyman CE. Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover with water. Biotechnol Bioeng 2004;86(1):88–98.
56 Zheng Y, Zhao J, Xu F, Li Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Pror Energy Combust Sci 2014;42:35–53.
57 Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: Fundamentals toward application. Biotechnol Adv 2011;29(6):675–85
https://doi.org/10.1016/j.biotechadv.2011.05.005
58 Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 2014;123(15):143–56
https://doi.org/10.1016/j.apenergy.2014.02.035
59 Yang B, Wyman CE. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2008;2(1):26–40.
60 Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L, editor Biofuels. Berlin: Springer; 2009. p. 67–93.
61 Zhu Z, Pan H. Woody biomass treatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour Technol 2010;101(13):4992–5002.
62 Olofsson K, Bertlisson M, Lidén G. A short review on SSF—An interesting process option from lignocellulosic feedstocks. Biotechnol Biofuels 2008;1:1–7.
63 Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009;100(1):10–8.
64 Delgenés JP, Penaud V, Moletta R. Pretreatments for the enhancement of anaerobic digestion of solid wastes. In: Mata-Alvarez J, editor Biomethanization of the organic fraction of municipal solid wastes . London: IWA Publishing; 2002. p. 201–28.
65 Montogomery LFR, Bochmann G. Pretreatment of feedstock for enhanced biogas production. Paris: IEA Bioenergy; 2014.
66 Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci 2008;9(9):1621–51.
67 Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 2002;81(1):33–44.
68 Weil JR, Sarikaya A, Rau SL, Goetz J, Ladisch CM, Brewer M, et al.Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol 1998;73(1):1–17.
69 Shahriari H, Warith M, Hamoda M, Kennedy KJ. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag 2012;32(1):41–52.
70 Xiao W, Clarkson WW. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 1997;8(1):61–6.
71 Sumphanwanich J, Leepipatpiboon N, Srinorakutara T, Akaracharanya A. Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation by Saccharomyces cerevisiae. Ann Microbiol 2008;58(2):219–25.
72 López Torres M, del Espinosa Lloréns M. Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag 2008;28(11):2229–34.
73 Achinas S, Euverink GJW. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 2016;23:44–53.
74 Pecorini I, Baldi F, Carnevale EA, Corti A. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste. Waste Manag 2016;56:143–50.
75 Micolucci F, Gottardo M, Cavinato C, Pavan P, Bolzonella D. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Manag 2016;48:227–35.
76 Abramson M, Shoseyov O, Hirsch S, Shani Z. Genetic modifications of plant cell walls to increase biomass and bioethanol production. In: Lee JW, editor Advanced biofuels and bioproducts. New York: Springer; 2013. p. 315–38.
77 US Environmental Protection Agency (EPA). Biosolids technology fact sheet: Multi-stage anaerobic digestion. Report. Washington, DC: Office of Water, EPA; 2006Sep.
78 Yu L, Ma J, Frear C, Zaher U, Chen S. Two-stage anaerobic digestion systems wherein one of the stages comprises a two-phase system. United States Patent US 20130309740. 2013 Nov 21.
79 Vandevivere P, De Baere L, Verstraete W. Types of anaerobic digesters for solid wastes. In: Mata-Alvarez J, editor Biomethanization of the organic fraction of municipal solid wastes. Barcelona: IWA Publishing; 2002. p. 111–40.
80 California Environmental Protection Agency. Current anaerobic digestion technologies used for treatment of municipal organic solid waste. Report. California: California Integrated Waste Management Board; 2008.
81 Colussi I, Cortesi A, Piccolo CD, Galloa V, Fernandeza ASR, Vitanza R. Improvement of methane yield from maize silage by a two-stage anaerobic process. Chem Eng Trans 2013;32:151–6.
82 Marín Pérez C, Weber A. Two stage anaerobic digestion system: Hydrolysis of different substrate. Landtechnik 2013;68(4):2 52–5.
83 Yabu H, Sakai C, Fujiwara T, Nishio N, Nakashimada Y. Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping. J Biosci Bioeng 2011;111(3):312–9.
84 Park Y, Hong F, Cheon J, Hidaka T, Tsuno H. Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment. J Biosci Bioeng 2008;105(1):48–54.
85 Blonskaja V, Menert A, Vilu R. Use of two-stage anaerobic treatment for distillery waste. Adv Environ Res 2003;7(3):671–8.
86 Kim J, Novak JT, Higgins MJ. Multi-staged anaerobic sludge digestion processes. J Environ Eng 2011;137(8):0000372.
87 Nasr N, Elbeshbishy E, Hafez H, Nakhla G, El Naggar MH. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresour Technol 2012;111:122–6.
88 Lindeboom REF, Fermoso FG, Weijma J, Zagt K, van Lier JB. Autogenerative high pressure digestion: Anaerobic digestion and biogas upgrading in a single step reactor system. Water Sci Technol 2011;64(3):647–53.
89 Merkle W, Zielonka S, Oechsner H, Lemmer A. High-pressure anaerobic digestion up to 180 bar: The effects on biogas production and upgrading. In: Proceedings of the Progress in Biogas III Conference; 2014 Sep 10–11; Stuttgart,Deutschland; 2014.
90 Bartlett DH. Pressure effects on in vivo microbial processes. Biochim Biophys Acta 2002;1595(1–2):367–81.
91 Merkle W, Baer K, Haag NL, Zielonka S, Ortloff F, Graf F, et al.High-pressure anaerobic digestion up to 100 bar: Influence of initial pressure on production kinetics and specific methane yields. Environ Technol 2017;38(3):337–44.
92 Fox MH, Noike T, Ohki T. Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste. Water Sci Technol 2003;48(4):77–84.
93 Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 2011;15(1):821–6.
94 Griffin ME, McMahon KD, Mackie RI, Raskin L. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 1998;57(3):342–55.
95 Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: A review. Bioresour Technol 2008;99(10):4044–64.
96 Xu P, Koffas MAG. Metabolic engineering of Escherichia coli for biofuel production. Biofuels 2010;1(3):493–504
https://doi.org/10.4155/bfs.10.13
97 Weng JK, Li X, Bonawitz ND, Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 2008;19(2):166–72.
98 Elferink SJWH, van Lis R, Heilig HGHJ, Akkermans ADL, Stams AJM. Detection and quantification of microorganisms in anaerobic bioreactors. Biodegradation 1998;9(3):169–77.
99 Karakashev D, Bastone DJ, Angelidaki I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 2005;71(1):331–8.
100 Klocke M, Nettmann E, Bergmann I, Mundt K, Souidiu K, Mumme J, et al.Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 2008;31(3):190–205.
101 Yu Y, Lee C, Kim J, Hwangs S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 2005;89(6):670–9.
102 Haruta S, Nakayama T, Nakamura K, Hemmi H, Ishii M, Igarashi Y, et al.Microbial diversity in biodegradation and reutilization processes of garbage. J Biosci Bioeng 2005;99(1):1–11. Erratum in: J Biosci Bioeng 2005;99(2):187–8.
103 Russo L, Ladisch M. Gaps in the research of 2nd generation transportation biofuels. Final report. Paris: IEA Bioenergy; 2008.
104 Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, et al.Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010;87(4):1303–15.
105 Lynd LR, Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: An update. Curr Opin Biotechnol 2005;16(5):577–83.
106 European Biofuels Technology Platform [Internet]. EBTP-SABS; c2007–2016 [cited 2016 Sep 9]. Development of enzymes and processes for cellulosic ethanol production. Ethanol fact sheet; [about 1 screens]. Available from: http://www.biofuelstp.eu/factsheets/ethanol-fact-sheet.html.
107 Blanch HW. Bioprocessing for biofuels. Curr Opin Biotechnol 2012;23(3):390–5.
108 Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, et al.Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies. Biofuels Bioprod Bioref 2010;4(1):77–93.
109 Msangi S. Biofuels and a green economy [Internet]. Washington, DC: IFPRI. [cited 2012 May 16]. Available from: http://www.ifpri.org/blog/biofuels-and-green-economy.
110 European Biogas Association. Biogas [Internet]. Brussels: EBA; c2013–2016. Available from: http://european-biogas.eu/biogas/.
111 Åhman M. Biomethane in the transport sector—An appraisal of the forgotten option. Energy Policy 2010;38(1):208–17.
112 European Environmental Agency. How much bioenergy can Europe produce without harming the environment? Report. Copenhagen: European Environmental Agency; 2006 Feb.
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585-.
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583-584.
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578-579.
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580-582.
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467-476.
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552-558.
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434-435.
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445-451.
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281-282.
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379-384.
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416-422.
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423-427.
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393-401.
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285-289.
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering