Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 379-384     https://doi.org/10.1016/J.ENG.2017.03.003
Research |
尼龙-6 单体己内酰胺绿色生产技术
宗保宁(),孙斌,程时标,慕旭宏,杨克勇,赵俊琦,张晓昕,吴巍
Research Institute of Petroleum Processing, China Petrochemical Corporation , Beijing 100083, China
全文: PDF(3181 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

中国石化石油化工科学研究院(RIPP) 历经20 年的努力,成功开发出尼龙-6 单体己内酰胺绿色生产技术。该项技术主要包括:钛硅分子筛与浆态床反应器集成用于环己酮氨肟化合成环己酮肟,纯硅分子筛与移动床反应器集成用于环己酮肟气相贝克曼重排,非晶态Ni 催化剂与磁稳定床反应器集成用于己内酰胺精制。己内酰胺绿色生产技术在国际上率先实现工业化应用,建成了200 kt·a−1的工业装置。与已有技术相比,工业装置投资明显减少,氮原子利用率大幅提升,“三废”排放显著下降,没有副产硫酸铵。因此,已内酰胺与苯之间的价格差逐步减小。2015 年,己内酰胺绿色生产技术的产能达到3×106 kt·a−1,使我国成为世界第一己内酰胺生产大国,全球市场份额超过50 %。

关键词 绿色化学绿色化工己内酰胺生产技术    
Abstract

After two decades’ endeavor, the Research Institute of Petroleum Processing (RIPP) has successfully developed a green caprolactam (CPL) production technology. This technology is based on the integration of titanium silicate (TS)-1 zeolite with the slurry-bed reactor for the ammoximation of cyclohexanone, the integration of silicalite-1 zeolite with the moving-bed reactor for the gas-phase rearrangement of cyclohexanone oxime, and the integration of an amorphous nickel (Ni) catalyst with the magnetically stabilized bed reactor for the purification of caprolactam. The world’s first industrial plant based on this green CPL production technology has been built and possesses a capacity of 200?kt·a−1. Compared with existing technologies, the plant investment is pronouncedly reduced, and the nitrogen (N) atom utilization is drastically improved. The waste emission is reduced significantly; for example, no ammonium sulfate byproduct is produced. As a result, the price difference between CPL and benzene drops. In 2015, the capacity of the green CPL production technology reached 3?×?106?t·a−1, making China the world’s largest CPL producer, with a global market share exceeding 50%.

Keywords Green chemistry      Green engineering      Caprolactam      Production technology     
基金资助: 
通讯作者: 宗保宁     E-mail: zongbn.ripp@sinopec.com
最新录用日期:    在线预览日期:    发布日期: 2017-06-30
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Baoning Zong
Bin Sun
Shibiao Cheng
Xuhong Mu
Keyong Yang
Junqi Zhao
Xiaoxin Zhang
Wei Wu
引用本文:   
Baoning Zong,Bin Sun,Shibiao Cheng, et al. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379-384.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.003     OR     http://engineering.org.cn/EN/Y2017/V3/I3/379
Reaction process Existing technology Green technology
The oximation reaction The oxidation of ammonia: 4NH 3 +7O 2   4NO 2 +6H 2 O The reduction of NO2 to hydroxylamine: 2NO 2 +2H + +5H 2   2NH 3 OH + +2H 2 O The hydroxylamine oximation: The decomposition of ammonium: 2NH 4 + +NO+NO 2   2N 2 +2H + +3H 2 O

The Beckmann rearrangement



CPL refining Raney nickel (Ni) catalyst, tank reactor Amorphous Ni catalyst, magnetically stabilized bed reactor
Tab.1  The existing CPL production technology and the green CPL production technology.
Fig.1  Schematic diagram of the ammoximation of cyclohexanone.
Fig.2  The 200?kt·a−1 cyclohexanone oxime industrial production unit.
Fig.3  A 10?kt·a−1 industrial demonstration unit of the gas-phase Beckmann rearrangement.
Fig.4  A 10?kt·a−1 crystallization purification industrial demonstration unit.
Fig.5  Industrial demonstration results of the gas-phase Beckmann rearrangement. (a) Cyclohexanone oxime conversion; (b) CPL selectivity.
Fig.6  Experimental apparatus of the magnetically stabilized bed reactor.
Fig.7  The 6?kt·a−1 demonstration unit of the magnetically stabilized bed reactor.
Fig.8  The 100?kt·a−1 CPL purification magnetically stabilized bed reactor unit.
Items Magnetically stabilized bed reactor Tank reactor
Reaction conditions Temperature (°C) 80 90
Pressure (MPa) 0.7 0.7
Liquid hourly space velocity (h−1) 30 2
Hydrogen/liquid rate (v/v) 2.0 2.0
Magnetic field intensity (kA·m−1) 20
PM value of the feed CPL solution (s) 100 100
PM value of the hydrotreated CPL solution (s) 4000 800
Catalyst consumption (kg·tCPL−1) 0.1 0.2
Tab.2  Comparison between magnetically stabilized bed and tank reactors for the purification of CPL.
1 IHS chemical Week, nylon engineering resins. [cited 2016 Jan]. Available from: http://chemweek.com.
2 Lin M, Shu X, Wang X, Zhu B, inventors; China Petrochemical Corporation, Research Institute of Petroleum Processing, Sinopec, assignees. Titanium-silicalite molecular sieve and the method for its preparation. United States patent US 6475465. 2002 Nov 5.
3 Sun B, Wu W, Wang E, Li Y, Zhang S, Hu L inventors; China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec, assignees. Process for regenerating titanium-containing catalysts. United States patent US 7384882. 2008 Jun 10.
4 Wu W, Sun B, Li Y, Cheng S, Wang E, Zhang S, inventors; China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec, assignees. Process for ammoximation of carbonyl compounds. United States patent US 7408080. 2008 Aug 5.
5 Cheng S, Min E, Wu W, Sun B, Zhang S, Wang E, inventors; China Patent Agent (Hong Kong) Co., Ltd., assignee. A method of cyclohexanone oxime’s gas phase rearrangement to caprolactam. China patent CN 100497316. 2003 Nov 28. Chinese.
6 Cheng S, Min E, Wu W, Sun B, Zhang S, Wang E, inventors; China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec, assignees. A preparation method of zeolite catalyst with an MFI structure. China patent CN 1600428. 2003 Sep 28. Chinese.
7 Mu X, Zong B, Min E, Wang X, Wang Y, Zhang X, et al.., inventors; China Petroleum Corporation, Research Institute of Petroleum Processing, Sinopec, assignees. Hydrogenation catalyst and its preparation. United States patent US 6368996. 2002 Apr 9.
8 Meng X, Mu X, Zong B, Min E, Zhu Z, Fu S, et al.. Purification of caprolactam in magnetically stabilized bed reactor. Catal Today 2003;79–80:21–7. doi:
https://doi.org/10.1016/S0920-5861(03)00038-5
9 Xu K, Sun B, Lin J, Wen W, Pei Y, Yan S, et al.. e-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst. Nat Commun 2014;5:5783. PMID:25503569 doi:
https://doi.org/10.1038/ncomms6783
10 Zong B. Amorphous Ni alloy hydrogenation catalyst and magnetically stabilized bed reaction technology. Catal Surv Asia 2007;11(1):87–94
https://doi.org/10.1007/s10563-007-9019-z
11 Pei Y, Zhou G, Luan N, Zong B, Qiao M, Tao F. Synthesis and catalysis of chemically reduced metal-metalloid amorphous alloys. Chem Soc Rev 2012;41(24):8140–62. PMID:22907172 doi:
https://doi.org/10.1039/c2cs35182j
12 Zong B, Mu X, Zhang X, Meng X, Qiao M. Research, development, and application of amorphous nickel alloy catalysts prepared by melt-quenching. Chinese J Catal 2013;34(5):828–37. doi:
https://doi.org/10.1016/S1872-2067(11)60486-5
13 Zhou G, Pei Y, Jiang Z, Fan K, Qiao M, Sun B, et al.. Doping effects of B in ZrO2 on structural and catalytic properties of Ru/B-ZrO2 catalysts for benzene partial hydrogenation. J Catal 2014;311:393–403. doi:
https://doi.org/10.1016/j.jcat.2013.12.022
14 Zong B, Zhang X, Qiao M. Integration of methanation into the hydrogenation process of benzoic acid. AIChE J 2009;55(1):192–7. doi:
https://doi.org/10.1002/aic.11679
15 Zhu L, Guo P, Chu X, Yan S, Qiao M, Fan K, et al.. An environmentally benign and catalytically efficient non-pyrophoric Ni catalyst for aqueous-phase reforming of ethylene glycol. Green Chem 2008;10(12):1323–30. doi:
https://doi.org/10.1039/b808190e
16 Hu J, Fan Y, Pei Y, Qiao M, Fan K, Zhang X, et al.. Shape effect of ZnO crystals as cocatalyst in combined reforming-hydrogenolysis of glycerol. ACS Catal 2013;3(10):2280–7. doi:
https://doi.org/10.1021/cs400526s
17 Zong B, Meng X, Mu X, Zhang X. Magnetically stabilized bed reactors. Chinese J Catal 2013;34(1):61–8
https://doi.org/10.1016/S1872-2067(11)60476-2
18 Fan J, Zong B, Zhang X, Meng X, Mu X, Yu G, et al.. Rapidly quenched skeletal Fe-based catalysts for Fischer-Tropsch synthesis. Ind Eng Chem Res 2008;47(16):5918–23
https://doi.org/10.1021/ie800285h
19 Yu G, Sun B, Pei Y, Xie S, Yan S, Qiao M, et al.. FexOy@C spheres as an excellent catalyst for Fischer-Tropsch synthesis. J Am Chem Soc 2010;132(3):935–7. PMID:20028126
https://doi.org/10.1021/ja906370b
20 Sun B, Yu G, Lin J, Xu K, Pei Y, Yan S, et al.. A highly selective Raney Fe@HZSM-5 Fischer-Tropsch synthesis catalyst for gasoline production: One-pot synthesis and unexpected effect of zeolites. Catal Sci Technol 2012;2:1625–9
https://doi.org/10.1039/c2cy20155k
21 Sun B, Jiang Z, Fang D, Xu K, Pei Y, Yan S, et al.. One-pot approach to a highly robust iron oxide/reduced graphene oxide nanocatalyst for Fischer-Tropsch synthesis. ChemCatChem 2013;5(3):714–9. doi:
https://doi.org/10.1002/cctc.201200653
22 Sun B, Lin J, Xu K, Pei Y, Yan S, Qiao M, et al.. Fischer-Tropsch synthesis over skeletal Fe-Ce catalysts leached from rapidly quenched ternary Fe-Ce-Al alloys. ChemCatChem 2013;5(12):3857–65. doi:
https://doi.org/10.1002/cctc.201300430
23 Cheng Y, Lin J, Xu K, Wang H, Yao X, Pei Y, et al.. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts. ASC Catal 2016;6(1):389–99
https://doi.org/10.1021/acscatal.5b02024
24 Xu K, Cheng Y, Lin J, Wang H, Xie S, Pei Y, et al.. Nanocrystalline iron-boron catalysts for low-temperature CO hydrogenation: Selective liquid fuel production and structure-activity correlation. J Catal 2016;339:102–10. doi:
https://doi.org/10.1016/j.jcat.2016.03.035
25 Pan Z, Dong M, Meng X, Zhang X, Mu X, Zong B. Integration of magnetically stabilized bed and amorphous Nickel alloy catalyst for CO methanation. Chem Eng Sci 2007;62(10):2712–7. doi:
https://doi.org/10.1016/j.ces.2007.02.007
26 Dong M, Pan Z, Peng Y, Meng X, Mu X, Zong B, et al.. Selective acetylene hydrogenation over core-shell magnetic Pd-supported catalysts in a magnetically stabilized bed. AIChE J 2008;54(5):1358–64
https://doi.org/10.1002/aic.11447
27 Peng Y, Dong M, Meng X, Zong B, Zhang J. Light FCC gasoline olefin oligomerization over a magnetic NiSO4/γ-Al2O3 catalyst in a magnetically stabilized bed. AIChE J 2009;55(3):717–25
https://doi.org/10.1002/aic.11712
28 Cheng M, Xie W, Zong B, Sun B, Qiao M. When magnetic catalyst meets magnetic reactor: Etherification of FCC light gasoline as an example. Sci Rep 2013;3:1973. PMID:23756855
https://doi.org/10.1038/srep01973
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343-351.
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336-342.
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421-429.
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300-.
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306-308.
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299-.
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381-391.
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309-310.
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352-360.
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371-380.
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392-397.
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311-320.
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398-405.
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330-335.
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering