Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 416-422     https://doi.org/10.1016/J.ENG.2017.03.004
Research |
城市固体废弃物气化的热力学分析
徐鹏程,金涌,程易()
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1504 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

本文的目的是用热力学分析方法来研究城市固体废弃物的气化特性。该热力学分析方法假设气化反应均达到热力学平衡条件,而不考虑反应器和过程特点。首先,我们选取了7 种城市固体废弃物( 包括厨余垃圾、木材、纸张、纺织品、橡胶、无氯塑料和聚氯乙烯),作为水蒸气气化过程的原料,水蒸气温度为973~2273 K,水气比为1~5。研究发现,水气比对气化性质的影响与水蒸气温度对气化性质的影响基本相同。7 种城市固体废弃物之间的不同主要是由它们的组成不同引起的。接下来,我们用该热力学平衡模型对实际城市固体废弃物的气化进行了分析。研究发现,由于无机物主要影响反应器温度,因此可以将城市固体废弃物中的无机物当作SiO2 或者Al2O3 进行简化处理。我们采用水蒸气、氢气和空气作为气化介质,详细考察了其气体产物的组成,以便根据需要选取处理城市固体废弃物的气化介质。

关键词 气化废弃物处理城市固体废弃物热力学分析气化介质    
Abstract

This work aims to understand the gasification performance of municipal solid waste (MSW) by means of thermodynamic analysis. Thermodynamic analysis is based on the assumption that the gasification reactions take place at the thermodynamic equilibrium condition, without regard to the reactor and process characteristics. First, model components of MSW including food, green wastes, paper, textiles, rubber, chlorine-free plastic, and polyvinyl chloride were chosen as the feedstock of a steam gasification process, with the steam temperature ranging from 973 K to 2273 K and the steam-to-MSW ratio (STMR) ranging from 1 to 5. It was found that the effect of the STMR on the gasification performance was almost the same as that of the steam temperature. All the differences among the seven types of MSW were caused by the variation of their compositions. Next, the gasification of actual MSW was analyzed using this thermodynamic equilibrium model. It was possible to count the inorganic components of actual MSW as silicon dioxide or aluminum oxide for the purpose of simplification, due to the fact that the inorganic components mainly affected the reactor temperature. A detailed comparison was made of the composition of the gaseous products obtained using steam, hydrogen, and air gasifying agents to provide basic knowledge regarding the appropriate choice of gasifying agent in MSW treatment upon demand.

Keywords Gasification      Waste treatment      Municipal solid waste      Thermodynamic analysis      Gasifying agents     
基金资助: 
通讯作者: 程易     E-mail: yicheng@tsinghua.edu.cn
最新录用日期:    在线预览日期:    发布日期: 2017-06-30
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Pengcheng Xu
Yong Jin
Yi Cheng
引用本文:   
Pengcheng Xu,Yong Jin,Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416-422.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.004     OR     http://engineering.org.cn/EN/Y2017/V3/I3/416
Model components Proximate analysis (wt%) Ultimate analysis (wt%) HHVdaf
(MJ·kg−1)
Mw Ad Vd FCd Cdaf Hdaf Odaf Ndaf Sdaf Cldaf
Food 69.85 20.98 66.79 12.23 47.22 7.04 41.15 3.86 0.49 1.06 15.39
Green wastes 42.95 6.84 75.87 17.29 51.35 6.39 40.50 1.59 0.18 0.29 19.46
Paper 13.15 12.20 76.14 11.66 45.62 6.01 47.78 0.34 0.22 0.28 15.89
Textiles 13.75 3.56 82.69 13.75 54.08 5.84 38.09 1.70 0.22 0.36 20.16
Rubber 0.89 15.64 64.70 19.67 84.52 8.62 4.31 0.86 1.56 1.62 43.45
Chlorine-free plastic 0.13 0.48 99.44 0.08 86.22 12.97 0.73 0.08 0.05 0.00 29.79
PVC 0.21 4.18 85.94 9.87 40.59 5.00 0.59 0.08 0.20 53.53 21.17
Tab.1  The proximate analysis and ultimate analysis of seven types of MSW.
Model components Chemical formula Molar mass (g·mol−1)
Food CH1.79O0.65N0.07S0.004Cl0.008 25.62
Green wastes CH1.49O0.59N0.03S0.001Cl0.002 23.44
Paper CH1.58O0.79N0.006S0.002Cl0.002 26.37
Textiles CH1.30O0.53N0.03S0.002Cl0.002 22.25
Rubber CH1.81O0.006N0.001S0.0002 13.92
Chlorine-free plastic CH1.22O0.04N0.009S0.007Cl0.007 14.41
PVC CH1.48O0.01N0.002S0.002Cl0.45 29.56
Tab.2  The chemical formula and molar mass of seven model components.
Food Green wastes Paper Textiles Rubber Chlorine-free plastic PVC
H2O 698.5 429.5 131.5 137.5 8.9 1.3 2.1
Model component 238.3 531.6 762.6 831.7 836.2 993.9 956.1
SiO2 63.3 39.0 106.0 30.7 155.0 4.8 41.7
Tab.3  The detailed logistics data of seven types of MSW (kg·h−1).
Fig.1  Yields of main gaseous products (on a dry, ash-free basis), reactor temperature, and LHV for food versus steam temperature, with an STMR of 2.
Fig.2  Yields of main gaseous products (on a dry, ash-free basis), reactor temperature, and LHV for food versus STMR, with a steam temperature of 1273 K.
Fig.3  Yields of main gaseous products (on a dry, ash-free basis), reactor temperature, and LHV for different MSWs versus STMR with a steam temperature of 1273 K.
Components Inorganics (wt%) Organics (wt%) Moisture (wt%)
Sand Glass Metal Paper Plastic Rubber Cloth Grass Food
Actual MSW 5.61 0.84 0.69 8.65 9.14 0.00 3.01 6.55 11.14 54.37
Tab.4  The composition of actual MSW from Nanjing on rainy days (as-received basis).
Components Proximate analysis (wt%) Ultimate analysis (wt%) HHVdaf
(MJ·kg−1)
Mw Ad Vd FCd Cdaf Hdaf Odaf Ndaf Sdaf Cldaf
Actual MSW 54.37 16.04 26.77 2.82 16.45 2.12 10.51 0.35 0.05 0.10 18.48
Tab.5  The proximate analysis and ultimate analysis of actual MSW (as-received basis).
Fig.4  The composition of gaseous products and reactor temperature for different inorganic components.
Fig.5  The mass flowrate and power input for different gasifying agents.
Fig.6  The composition of gaseous products for different gasifying agents.
cTotal number of atom types present in the system
gGibbs free energy of the pure species

g
Partial molar Gibbs free energy
GGibbs free energy of the system
MMolar mass
nijNumber of the atom i that appears in the species j
NNumber of moles

N
Total number of moles of all species in the phase
piTotal mole number of atom i
PPressure of the system
RUniversal gas constant
RC/HEffective mole ratio of C/H
sTotal number of species types
TReactor temperature
T0Initial temperature of MSW
T1Initial temperature of gasifying agents
xMole fraction of species
Subscripts
iAtom
jSpecies
Tab.1  
1 Sakai S, Sawell SE, Chandler AJ, Eighmy TT, Kosson DS, Vehlow J, et al . World trends in municipal solid waste management. Waste Manag 1996;16(5–6):341–50
https://doi.org/10.1016/S0956-053X(96)00106-7
2 Tonjes DJ, Greene KL. A review of national municipal solid waste generation assessments in the USA. Waste Manag Res 2012;30(8):758–71
https://doi.org/10.1177/0734242X12451305
3 United States Environmental Protection Agency. Advancing sustainable materials management: Facts and figures [Internet]. [cited 2016 Nov 2]. Available from: http://www.epa.gov/osw/nonhaz/municipal/.
4 National Bureau of Statistics of the People’s Republic of China. China statistical year book 2014. Beijing: China Statistics Press; 2015.Chinese.
5 El-Fadel M, Findikakis AN, Leckie JO. Environmental impacts of solid waste landfilling. J Environ Manag 1997;50(1):1–25
https://doi.org/10.1006/jema.1995.0131
6 Murphy JD, McKeogh E. Technical, economic and environmental analysis of energy production from municipal solid waste. Renew Energ 2004;29(7):1043–57
https://doi.org/10.1016/j.renene.2003.12.002
7 McKay G. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: Review. Chem Eng J 2002;86(3):343–68
https://doi.org/10.1016/S1385-8947(01)00228-5
8 Arena U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 2012;32(4):625–39
https://doi.org/10.1016/j.wasman.2011.09.025
9 Saxena RC, Seal D, Kumar S, Goyal HB. Thermo-chemical routes for hydrogen rich gas from biomass: A review. Renew Sust Energ Rev 2008;12(7):1909–27
https://doi.org/10.1016/j.rser.2007.03.005
10 McKendry P. Energy production from biomass (Part 3): Gasification technologies. Bioresour Technol 2002;83(1):55–63
https://doi.org/10.1016/S0960-8524(01)00120-1
11 Malkow T. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Manag 2004;24(1):53–79
https://doi.org/10.1016/S0956-053X(03)00038-2
12 Rapagnà S, Latif A. Steam gasification of almond shells in a fluidised bed reactor: The influence of temperature and particle size on product yield and distribution. Biomass Bioenerg 1997;12(4):281–8
https://doi.org/10.1016/S0961-9534(96)00079-7
13 Rapagnà S, Jand N, Foscolo PU.Catalytic gasification of biomass to produce hydrogen rich gas. Int J Hydrogen Energ 1998;23(7):551–7
https://doi.org/10.1016/S0360-3199(97)00108-0
14 Rapagnà S, Jand N, Kiennemann A, Foscolo PU.Steam-gasification of biomass in a fluidised-bed of olivine particles. Biomass Bioenerg 2000;19(3):187–97
https://doi.org/10.1016/S0961-9534(00)00031-3
15 Di Blasi C, Branca C. Temperatures of wood particles in a hot sand bed fluidized by nitrogen. Energy Fuel 2003;17(1):247–54
https://doi.org/10.1021/ef020146e
16 Umeki K, Yamamoto K, Namioka T, Yoshikawa K. High temperature steam-only gasification of woody biomass. Appl Energ 2010;87(3):791–8
https://doi.org/10.1016/j.apenergy.2009.09.035
17 He M, Hu Z, Xiao B, Li J, Guo X, Luo S, et al..Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition. Int J Hydrogen Energ 2009;34(1):195–203
https://doi.org/10.1016/j.ijhydene.2008.09.070
18 He M, Xiao B, Hu Z, Liu S, Guo X, Luo S. Syngas production from catalytic gasification of waste polyethylene: Influence of temperature on gas yield and composition. Int J Hydrogen Energ 2009;34(3):1342–8
https://doi.org/10.1016/j.ijhydene.2008.12.023
19 He M, Xiao B, Liu S, Guo X, Luo S, Xu Z,et al..Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of steam to MSW ratios and weight hourly space velocity on gas production and composition. Int J Hydrogen Energ 2009;34(5):2174–83
https://doi.org/10.1016/j.ijhydene.2008.11.115
20 Parthasarathy P, Narayanan KS. Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield—A review. Renew Energ 2014;66:570–9
https://doi.org/10.1016/j.renene.2013.12.025
21 Mahishi MR, Goswami DY. Thermodynamic optimization of biomass gasifier for hydrogen production. Int J Hydrogen Energ 2007;32(16):3831–40
https://doi.org/10.1016/j.ijhydene.2007.05.018
22 Puig-Arnavat M, Carlos Bruno J, Coronas A. Modified thermodynamic equilibrium model for biomass gasification: A study of the influence of operating conditions. Energy Fuel 2012;26(2):1385–94
https://doi.org/10.1021/ef2019462
23 Reynolds WC. The element potential method for chemical equilibrium analysis: Implementation in the interactive program STANJAN, version 3. Technical report. Stanford (US): Department of Mechanical Engineering, Stanford University; 1986.
24 Zhou H, Meng A, Long Y, Li Q, Zhang Y. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renew Sust Energ Rev 2014;36:107–22
https://doi.org/10.1016/j.rser.2014.04.024
25 Lackner M, Palotás AB, Winter F, editors. Combustion: From basics to applications. 1st ed. New Jersey: Wiley-VCH; 2013.
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585-.
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583-584.
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578-579.
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580-582.
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467-476.
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552-558.
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434-435.
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445-451.
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281-282.
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379-384.
[11] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423-427.
[12] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393-401.
[13] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285-289.
[14] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365-378.
[15] Spyridon Achinas, Vasileios Achinas, Gerrit Jan Willem Euverink. A Technological Overview of Biogas Production from Biowaste[J]. Engineering, 2017, 3(3): 299-307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering