Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 285-289     https://doi.org/10.1016/J.ENG.2017.03.005
Research |
Ni-Bi 助剂用于α-Fe2O3 光电阳极提高氧化动力学和钝化表面态
党珂1,2,王拓1,2,李澄澄1,2,张冀杰1,2,刘珊珊1,2,巩金龙1,2()
1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
全文: PDF(1314 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

本文提出了镍-硼酸(Ni-Bi) 助催化剂负载于α 型三氧化二铁(Fe2O3) 具有提升表面动力学和钝化表面态的双重作用。Ni-Bi助剂的负载使Fe2O3 光电阳极的光电流起始电位产生230 mV 的负移,1.23 V(vs. RHE)下的光电流密度也提升了2.3 倍。Ni-Bi助剂层中的Bi 促进了产氧反应的脱质子步骤。

Abstract

This paper describes the combinational surface kinetics enhancement and surface states passivation of nickel-borate (Ni-Bi) co-catalyst for a hematite (Fe2O3) photoanode. The Ni-Bi-modified Fe2O3 photoanode exhibits a cathodic onset potential shift of 230 mV and a 2.3-fold enhancement of the photocurrent at 1.23 V, versus the reversible hydrogen electrode (RHE). The borate (Bi) in the Ni-Bi film promotes the release of protons for the oxygen evolution reaction (OER).

Keywords Nickel-borate      Hematite      Oxygen evolution reaction      Co-catalyst     
通讯作者: 巩金龙     E-mail: jlgong@tju.edu.cn
最新录用日期:    在线预览日期:    发布日期: 2017-06-30
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Ke Dang
Tuo Wang
Chengcheng Li
Jijie Zhang
Shanshan Liu
Jinlong Gong
引用本文:   
Ke Dang,Tuo Wang,Chengcheng Li, et al. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285-289.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.005     OR     http://engineering.org.cn/EN/Y2017/V3/I3/285
Fig.1  SEM images of (a) Fe2O3 and (b) Ni-Bi/Fe2O3. TEM images of a Ni-Bi/Fe2O3 photoanode at (c) low and (d) high resolution. The inset of (d) is the SAED pattern of Ni-Bi/Fe2O3.
Fig.2  (a) J-V curves recorded under air mass 1.5 global (AM 1.5G) illumination. (b) IPCE measured at 1.23 V vs. RHE. EIS in Nyquist plots measured at 1.5 V vs. RHE under (c) darkness and (d) illumination. 0.5 mol·L−1 KBi electrolyte (pH 9.2) is used, as in all measurements. The electrolyte is not stirred. The inset of (d) shows the equivalent circuit of the photoanode.
Fig.3  (a) OCP under darkness and AM 1.5G illumination, and (b) Mott-Schottky plots recorded under darkness in 0.5 mol·L−1 KBi (pH 9.2) electrolyte. (c) PL spectra of bare Fe2O3 and Fe2O3 decorated with Ni-Bi. (d) The overpotential of the water oxidation of Ni-Bi/Fe2O3, NiOOH/Fe2O3, and bare Fe2O3 electrode in 0.1 mol·L−1 KBi buffer electrolyte at different pHs (with 2 mol·L−1 KNO3 as the support electrolyte).
Fig.4  Schematic illustration of the combinational effects of Ni-Bi OEC on an Fe2O3 photoanode.
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238(5358):37–8
https://doi.org/10.1038/238037a0
2 Nellist MR, Laskowski FAL, Lin F, Mills TJ, Boettcher SW. Semiconductor-electrocatalyst interfaces: Theory, experiment, and applications in photoelectrochemical water splitting. Acc Chem Res 2016;49(4):733–40
https://doi.org/10.1021/acs.accounts.6b00001
3 Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, et al.Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 2014;136(19):7077–84
https://doi.org/10.1021/ja502128j
4 Zhong DK, Cornuz M, Sivula K, Gratzel M, Gamelin DR. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 2011;4(5):1759–64
https://doi.org/10.1039/c1ee01034d
5 Seabold JA, Choi KS. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mater 2011;23(5):1105–12
https://doi.org/10.1021/cm1019469
6 Dincă M, Surendranath Y, Nocera DG. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci USA 2010;107(23):10337–41
https://doi.org/10.1073/pnas.1001859107
7 Bediako DK, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra VK, Nocera DG. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J Am Chem Soc 2012;134(15):6801–9
https://doi.org/10.1021/ja301018q
8 Choi SK, Choi W, Park H. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys Chem Chem Phys 2013;15(17):6499–507
https://doi.org/10.1039/c3cp00073g
9 Gan J, Lu X, Rajeeva BB, Menz R, Tong Y, Zheng Y. Efficient photoelectrochemical water oxidation over hydrogen-reduced nanoporous BiVO4 with Ni-Bi electrocatalyst. Chem Electro Chem 2015;2(9):1385–95.
10 Zhang P, Wang T, Chang X, Zhang L, Gong J. Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematite. Angew Chem Int Ed 2016;128(19):5945–9
https://doi.org/10.1002/ange.201600918
11 Li C, Hisatomi T, Watanabe O, Nakabayashi M, Shibata N, Domen K, et al.Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy Environ Sci 2015;8(5):1493–500
https://doi.org/10.1039/C5EE00250H
12 Berglund SP, Abdi FF, Bogdanoff P, Chemseddine A, Friedrich D, van de Krol R. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem Mater 2016;28(12):4231–42
https://doi.org/10.1021/acs.chemmater.6b00830
13 Kumagai H, Minegishi T, Sato N, Yamada T, Kubota J, Domen K. Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes. J Mater Chem A 2015;3(16):8300–7
https://doi.org/10.1039/C5TA01058F
14 Wang Z, Liu G, Ding C, Chen Z, Zhang F, Shi J, et al.Synergetic effect of conjugated Ni(OH)2/IrO2 cocatalyst on titanium-doped hematite photoanode for solar water splitting. J Phys Chem C 2015;119(34):19607–12
https://doi.org/10.1021/acs.jpcc.5b04892
15 Kim JY, Youn DH, Kang K, Lee JS. Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew Chem 2016;128(36):11012–6
https://doi.org/10.1002/ange.201605924
16 Ahmed AY, Ahmed MG, Kandiel TA. Modification of hematite photoanode with cobalt based oxygen evolution catalyst via bifunctional linker approach for efficient water splitting. J Phys Chem C 2016;120(41):23415–20
https://doi.org/10.1021/acs.jpcc.6b08010
17 Malara F, Minguzzi A, Marelli M, Morandi S, Psaro R, Dal Santo V, et al.α-Fe2O3/NiOOH: An effective heterostructure for photoelectrochemical water oxidation. ACS Catal 2015;5(9):5292–300
https://doi.org/10.1021/acscatal.5b01045
18 Klahr B, Hamann T. Water oxidation on hematite photoelectrodes: Insight into the nature of surface states through in situ spectroelectrochemistry. J Phys Chem C 2014;118(19):10393–9
https://doi.org/10.1021/jp500543z
19 Yatom N, Neufeld O, Toroker MC. Toward settling the debate on the role of Fe2O3 surface states for water splitting. J Phys Chem C 2015;119(44):24789–95
https://doi.org/10.1021/acs.jpcc.5b06128
20 Le Formal F, Tetreault N, Cornuz M, Moehl T, Gratzel M, Sivula K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci 2011;2(4):737–43
https://doi.org/10.1039/C0SC00578A
21 Du C, Yang X, Mayer MT, Hoyt H, Xie J, McMahon G, et al.Hematite-based water splitting with low turn-on voltages. Angew Chem Int Ed 2013;52(48):12692–5
https://doi.org/10.1002/anie.201306263
22 Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014;343(6174):990–4
https://doi.org/10.1126/science.1246913
23 Luo Z, Li C, Liu S, Wang T, Gong J. Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation. Chem Sci 2016;2017(8):91–100.
24 Chang X, Wang T, Zhang P, Zhang J, Li A, Gong J. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J Am Chem Soc 2015;137(26):8356–9
https://doi.org/10.1021/jacs.5b04186
25 Xu Y, Wang X, Chen H, Kuang D, Su C. Toward high performance photoelectrochemical water oxidation: Combined effects of ultrafine cobalt iron oxide nanoparticle. Adv Funct Mater 2016;26(24):4414–21
https://doi.org/10.1002/adfm.201600232
26 Zhang M, Luo W, Zhang N, Li Z, Yu T, Zou Z. A facile strategy to passivate surface states on the undoped hematite photoanode for water splitting. Electrochem Commun 2012;23:41–3
https://doi.org/10.1016/j.elecom.2012.06.040
27 Han L, Dong S, Wang E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 2016;28(42):9266–91
https://doi.org/10.1002/adma.201602270
28 Ye KH, Wang Z, Gu J, Xiao S, Yuan Y, Zhu Y, et al.Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ Sci 2017;10(3):772–9
https://doi.org/10.1039/C6EE03442J
29 Trześniewski BJ, Diaz-Morales O, Vermaas DA, Longo A, Bras W, Koper MTM, et al.In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity. J Am Chem Soc 2015;137(48):15112–21
https://doi.org/10.1021/jacs.5b06814
30 Dionigi F, Strasser P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv Energy Mater 2016;6(23):1600621–40
https://doi.org/10.1002/aenm.201600621
31 Pham HH, Cheng MJ, Frei H, Wang LW. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4 (001) surface. ACS Catal 2016;6(8):5610–7
https://doi.org/10.1021/acscatal.6b00713
32 Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J Am Chem Soc 2015;137(3):1305–13
https://doi.org/10.1021/ja511559d
33 Koper MTM. Theory of the transition from sequential to concerted electrochemical proton-electron transfer. Phys Chem Chem Phys 2013;15(5):1399–407
https://doi.org/10.1039/C2CP42369C
[1]  Supplementary Information Download
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering