Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 423-427     https://doi.org/10.1016/J.ENG.2017.03.006
Research |
微波熔炼在锡粉回收中的工业应用
许磊1,2(),彭金辉1,2(),白海龙3,Srinivasakannan C.4(),张利波1,2,吴庆田1,韩朝晖1,2,郭胜惠1,2,巨少华1,2,杨黎1,2
1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
3. Yunnan Tin Group (Holding) Company Limited, Gejiu, Yunnan 661000, China
4. Chemical Engineering Program, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
全文: PDF(2316 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

本文探讨了微波加热在工业锡粉熔化中的应用。对离心雾化法制备的金属锡粉的形貌和粒径进行了表征锡粉颗粒均且呈球形,90% 的颗粒粒径为38~75 μm。过介电性能测试,研究了锡粉的微波吸收特性微波的穿作用对锡粉具有良好的整体加热能。温度高于150℃时,微波加热锡粉的主要机制是电导损耗设计开发了20 kW 微波熔炼锡合金装备,并将其应用于产业化该装备的加热率与常规方法相比能提高10 倍以上,缩短了熔炼工艺研究结果表明,微波加热加快了升温率,缩短了熔炼时间,锡回收率为97.79%,渣量仅为1.65%,其他损失低于0.56%;单位能耗仅为0.17 kW·h·kg−1远低于传统方法所要的能量。因此微波冶炼提高了加热效率,降低了能

关键词 微波加热熔炼锡粉微波装备回收    
Abstract

The present work explores the application of microwave heating for the melting of powdered tin. The morphology and particle size of powdered tin prepared by the centrifugal atomization method were characterized. The tin particles were uniform and spherical in shape, with 90% of the particles in the size range of 38–75 μm. The microwave absorption characteristic of the tin powder was assessed by an estimation of the dielectric properties. Microwave penetration was found to have good volumetric heating on powdered tin. Conduction losses were the main loss mechanisms for powdered tin by microwave heating at temperatures above 150 °C. A 20 kW commercial-scale microwave tin-melting unit was designed, developed, and utilized for production. This unit achieved a heating rate that was at least 10 times higher than those of conventional methods, as well as a far shorter melting duration. The results suggest that microwave heating accelerates the heating rate and shortens the melting time. Tin recovery rate was 97.79%, with a slag ratio of only 1.65% and other losses accounting for less than 0.56%. The unit energy consumption was only 0.17 (kW·h)·kg−1—far lower than the energy required by conventional melting methods. Thus, the microwave melting process improved heating efficiency and reduced energy consumption.

Keywords Microwave heating      Melting      Tin powder      Microwave equipment      Recovery     
基金资助: 
通讯作者: 许磊,彭金辉,Srinivasakannan C.     E-mail: xulei_kmust@aliyun.com;jhpeng@kmust.edu.cn;csrinivasakannan@pi.ac.ae
最新录用日期:    在线预览日期:    发布日期: 2017-06-30
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Lei Xu
Jinhui Peng
Hailong Bai
C. Srinivasakannan
Libo Zhang
Qingtian Wu
Zhaohui Han
Shenghui Guo
Shaohua Ju
Li Yang
引用本文:   
Lei Xu,Jinhui Peng,Hailong Bai, et al. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423-427.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.006     OR     http://engineering.org.cn/EN/Y2017/V3/I3/423
Fig.1  The (a) morphology and (b) particle size of the powdered tin.
Fig.2  Schematic of microwave penetration of particulate metals.
Fig.3  (a) Schematic of the surface induced eddy current of tin particles in a microwave field; (b) scanning electron microscopy image of tin powder particles.
Fig.4  Dielectric constant measurement system: ① Cylindrical resonant cavity with cubic protector, ② cables, ③ the vector network analyzer, ④ data lines, ⑤ computer, ⑥ heating system, and ⑦ lifting channel.
Fig.5  The (a) dielectric constant, (b) dielectric loss factor, and (c) dielectric loss tangent varies with different temperatures.
Fig.6  Temperature rise curve for the melting of 1.5 kg of powdered tin by microwave heating (2.5 kW).
Fig.7  (a) The industrial-scale tin powder microwave melting unit; (b) the schematic of equipment structure.
Fig.8  Temperature rise curve of tin powder melting by 20 kW microwave unit.
Fig.9  Tin ingots produced by (a) microwave melting and (b) casting.
1 Louzguine-Luzgin DV, Xie GQ, Li S, Inoue A, Yoshikawa N, Mashiko K, et al.Microwave-induced heating and sintering of metallic glasses. J Alloys Compd 2009;483(1–2):78–81
https://doi.org/10.1016/j.jallcom.2008.07.158
2 Mondal A, Shukla A, Upadhyaya A, Agrawal D. Effect of porosity and particle size on microwave heating of copper. Sci Sinter 2010;42(2):169–82
https://doi.org/10.2298/SOS1002169M
3 Anklekar RM, Agrawal DK, Roy R. Microwave sintering and mechanical properties of PM copper steel. Powder Metall 2001;44(4):355–62
https://doi.org/10.1179/pom.2001.44.4.355
4 Anklekar RM, Bauer K, Agrawal DK, Roy R. Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts. Powder Metall 2005;48(1):39–46
https://doi.org/10.1179/003258905X37657
5 Plazl I, Pipus G, Koloini T. Microwave heating of the continuous flow catalytic reactor in a nonuniform electric field. AIChE J 1997;43(3):754–60
https://doi.org/10.1002/aic.690430320
6 Roy R, Agrawal D, Cheng J, Gedevanishvili S. Full sintering of powder-metal bodies in a microwave field. Nature 1999;399(6737):668–70
https://doi.org/10.1038/21390
7 Rybakov KI, Semenov VE, Egorov SV, Eremeev AG, Plotnikov IV, Bykov YV. Microwave heating of conductive powder materials. J Appl Phys 2006;99(2):023506
https://doi.org/10.1063/1.2159078
8 Peng J, Zhang L, Xia H, Ju S, Chen G, Xu L. New technology of unconventional metallurgy.Beijing: Metallurgical Industry Press; 2015.
9 Birnboim A, Gershon D, Calame J, Birman A, Carmel Y, Rodgers J, et al.Comparative study of microwave sintering of zinc oxide at 2.45, 30, and 83 GHz. J Am Ceram Soc 1998;81(6):1493–501
https://doi.org/10.1111/j.1151-2916.1998.tb02508.x
10 Mishra RR, Sharma AK. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos Part A: Appl Sci Manuf 2016;81:78–97
https://doi.org/10.1016/j.compositesa.2015.10.035
11 Rong Z, Fan X, Yang F, Cai X, Li G. Microwave activated hot pressing: A new consolidation technique and its application to fine crystal bismuth telluride based compounds. Powder Technol 2014;267:119–25
https://doi.org/10.1016/j.powtec.2014.07.022
12 Rong Z, Fan X, Yang F, Cai X, Han X, Li G. Microwave activated hot pressing: A new opportunity to improve the thermoelectric properties of n-type Bi2Te3−xSex bulks. Mater Res Bull 2016;83:122–7
https://doi.org/10.1016/j.materresbull.2016.05.030
13 Yang F, Fan X, Rong Z, Cai X, Li G. Lattice thermal conductivity reduction due to in situ-generated nano-phase in Bi0.4Sb1.6Te3 alloys by microwave-activated hot pressing. J Electron Mater 2014;43(11):4327–34
https://doi.org/10.1007/s11664-014-3339-3
14 Fan X, Rong Z, Yang F, Cai X, Han X, Li G. Effect of process parameters of microwave activated hot pressing on the microstructure and thermoelectric properties of Bi2Te3-based alloys. J Alloys Compd 2015;630:282–7
https://doi.org/10.1016/j.jallcom.2015.01.075
15 Chen G, Peng H, Silberschmidt VV, Chan Y, Liu C, Wu F. Performance of Sn-3.0Ag-0.5Cu composite solder with TiC reinforcement: Physical properties, solderability and microstructural evolution under isothermal ageing. J Alloys Compd 2016;685:680–9
https://doi.org/10.1016/j.jallcom.2016.05.245
16 Minagawa K, Kakisawa H, Osawa Y, Takamori S, Halada K. Production of fine spherical lead-free solder powders by hybrid atomization. Sci Technol Adv Mater 2005;6(3–4):325–9
https://doi.org/10.1016/j.stam.2005.03.010
17 Plookphol T, Wisutmethangoon S, Gonsrang S. Influence of process parameters on SAC305 lead-free solder powder produced by centrifugal atomization. Powder Technol 2011;214(3):506–12
https://doi.org/10.1016/j.powtec.2011.09.015
18 Gerdes T, Willert-Porada M, Park HS. Microwave sintering of ferrous PM materials. In: Proceedings of the International Conference on Powder Metallurgy & Particulate Materials ; 2006 Jun 18–21; San Diego , USA. New Jersey: Metal Powder Industries Federation; 2006.
19 Mishra P, Upadhyaya A, Sethi G. Modeling of microwave heating of particulate metals. Metall Mater Trans B 2006;37(5):839–45
https://doi.org/10.1007/s11663-006-0066-z
20 Mondal A, Agrawal D, Upadhyaya A. Microwave heating of pure copper powder with varying particle size and porosity. J Microw Power Electromagn Energy 2008;43(1):5–10
https://doi.org/10.1080/08327823.2008.11688599
21 Tripathi M, Sahu JN, Ganesan P, Dey TK. Effect of temperature on dielectric properties and penetration depth of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS. Fuel 2015;153:257–66
https://doi.org/10.1016/j.fuel.2015.02.118
22 Chandrasekaran S, Basak T, Ramanathan S. Experimental and theoretical investigation on microwave melting of metals. J Mater Process Technol 2011;211(3):482–7
https://doi.org/10.1016/j.jmatprotec.2010.11.001
23 Luo SD, Yan M, Schaffer GB, Qian M. Sintering of titanium in vacuum by microwave radiation. Metall Mater Trans A 2011;42(8):2466–74
https://doi.org/10.1007/s11661-011-0645-8
[1] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421-429.
[2] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371-380.
[3] Xiaohong Zheng, Zewen Zhu, Xiao Lin, Yi Zhang, Yi He, Hongbin Cao, Zhi Sun. A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries[J]. Engineering, 2018, 4(3): 361-370.
[4] Qiong Zhang, Christine Prouty, Julie B. Zimmerman, James R. Mihelcic. More than Target 6.3: A Systems Approach to Rethinking Sustainable Development Goals in a Resource-Scarce World[J]. Engineering, 2016, 2(4): 481-489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering