Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (5) : 726-730     https://doi.org/10.1016/J.ENG.2017.03.007
Research |
饲料的分子结构与动物营养物质利用率和有效性的关系——一种新方法
俞培强(),Luciana L. Prates
Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
全文: PDF(1151 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 新的研究思路、研究方法和生物分析技术的创造和发展对动物科学(包括饲料和营养科学)的进步是必不可少的。本文介绍了以同步加速器为基础的先进生物分析技术作为一项崭新的研究工具,在研究由多种处理(如基因修饰、基因沉默、饲料的热加工处理、生物燃料加工等)诱导的饲料分子结构变化与动物消化吸收饲料营养物质的关系方面的潜在应用。以同步辐射为基础的先进技术[如同步辐射红外显微光谱技术(synchrotron radiation infrared microspectroscopy,SR-IMS)和同步辐射X射线技术]作为一种快速、无损的生物分析技术被开发利用。与传统的湿化学法不同,同步辐射技术不会破坏饲料内在的分子结构。尖端和先进的同步加速器光源(是日光的上百万倍)能够以超高分辨率在细胞和分子水平上探测生物组织的内在结构。总的来说,最近开发的基于同步辐射的生物分析技术结合常用的研究技术将带来动物饲料和营养研究的巨大进步。
关键词 内部分子结构同步辐射应用分子营养饲料科学技术分子成像养分消化与吸收    
Abstract

The invention and development of new research concepts, novel methodologies, and novel bioanalytical techniques are essential in advancing the animal sciences, which include feed and nutrition science. This article introduces a novel approach that shows the potential of advanced synchrotron-based bioanalytical technology for studying the effects of molecular structural changes in feeds induced by various treatments (e.g., genetic modification, gene silencing, heat-related feed processing, biofuel processing) in relation to nutrient digestion and absorption in animals. Advanced techniques based on synchrotron radiation (e.g., synchrotron radiation infrared microspectroscopy (SR-IMS) and synchrotron radiation X-ray techniques) have been developed as a fast, noninvasive, bioanalytical technology that, unlike traditional wet chemistry methods, does not damage or destroy the inherent molecular structure of the feed. The cutting-edge and advanced research tool of synchrotron light (which is a million times brighter than sunlight) can be used to explore the inherent structure of biological tissue at cellular and molecular levels at ultra-high spatial resolutions. In conclusion, the use of recently developed bioanalytical techniques based on synchrotron radiation along with common research techniques is leading to dramatic advances in animal feed and nutritional research.

Keywords Inherent molecular structure      Synchrotron radiation applications      Molecular nutrition      Feed science technology      Molecular imaging      Nutrient digestion and absorption     
基金资助: 
最新录用日期:    在线预览日期:    发布日期: 2017-11-08
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Peiqiang Yu
Luciana L. Prates
引用本文:   
Peiqiang Yu,Luciana L. Prates. Molecular Structure of Feeds in Relation to Nutrient Utilization and Availability in Animals: A Novel Approach[J]. Engineering, 2017, 3(5): 726-730.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.007     OR     http://engineering.org.cn/EN/Y2017/V3/I5/726
Fig.1  Advanced synchrotron-based bioanalytical technology can provide four kinds of information simultaneously, including tissue structure, tissue nutrition, tissue chemistry, and tissue environment.
Fig.2  It is a time-consuming and expensive process to determine the metabolizable protein of a feed or diet. CP: crude protein; CHO: carbohydrate; GE: gain energy; kp: rate of passage; kd: rate of degradation; RDC: rumen degradable carbohydrate; RDP: rumen degradable protein; OEB: degraded protein balance; MCP: microbial crude protein; AMCP: truly absorbed microbial protein in the small intestine; ARUP: truly absorbed rumen undegraded protein in the small intestine; DVE: truly digested protein in the small intestine; NE: net energy; UCP: undigestable crude protein; ENDP: endogenous protein in the small intestine; FPCM: fat-protein-corrected milk; UOM: undigestible organic matter. (Adapted from our team member Arjan Jonker)
Fig.3  Summary and implications of a synchrotron-based molecular spectroscopic approach.
1 Yu P. Application of advanced synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy to animal nutrition and feed science: A novel approach. Br J Nutr 2004;92(6):869–85
https://doi.org/10.1079/BJN20041298
2 Budevska BO. Applications in life, pharmaceutical and natural sciences. In: Chalmers JM, Griffiths PR, editors Handbook of vibrational spectroscopy. New York: John Wiley & Sons; 2002. p. 3720–32.
3 Marinkovic NS, Huang R, Bromberg P, Sullivan M, Toomey J, Miller LM, et al.Center for Synchrotron Biosciences’ U2B beamline: An international resource for biological infrared spectroscopy. J Synchrotron Radiat 2002;9(Pt 4):189–97
https://doi.org/10.1107/S0909049502008543
4 Wetzel DL, Eilert AJ, Pietrzak LN, Miller SS, Sweat JA. Ultraspatially-resolved synchrotron infrared microspectroscopy of plant tissue in situ. Cell Mol Biol 1998;44(1):145–68.
5 Marinkovic NS, Chance MR. Synchrotron infrared microspectroscopy. In: Meyers R, editor Encyclopedia of molecular cell biology and molecular medicine. 2nd ed. New Jersey: Wiley-Blackwell; 2004. p. 671–708.
6 Miller LM, Dumas P. Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta 2006;1758(7):846–57
https://doi.org/10.1016/j.bbamem.2006.04.010
7 Yu P. Synchrotron-based microspectroscopic analysis of molecular and biopolymer structures using multivariate techniques and advanced multi-component modeling. Can J Anal Sci Spect 2008;53(5):220–31.
8 Wetzel DL, Srivarin P, Finney JR. Revealing protein infrared spectral detail in a heterogeneous matrix dominated by starch. Vib Spectrosc 2003;31(1):109–14
https://doi.org/10.1016/S0924-2031(02)00100-5
9 Doiron K, Yu P, McKinnon JJ, Christensen DA. Heat-induced protein structure and subfractions in relation to protein degradation kinetics and intestinal availability in dairy cattle. J Dairy Sci 2009;92(7):3319–30
https://doi.org/10.3168/jds.2008-1946
10 Doiron KJ, Yu P, Christensen CR, Christensen DA, McKinnon JJ. Detecting molecular changes in Vimy flaxseed protein structure using synchrotron FTIRM and DRIFT spectroscopic techniques: Structural and biochemical characterization. Spectroscopy 2009;23(5–6):307–22
https://doi.org/10.1155/2009/740196
11 Yu P, Doiron K, Liu D. Shining light on the differences in molecular structural chemical makeup and the cause of distinct degradation behavior between malting- and feed-type barley using synchrotron FTIR microspectroscopy: A novel approach. J Agric Food Chem 2008;56(9):3417–26
https://doi.org/10.1021/jf800015x
12 Zhang X, Yu P. Molecular basis of protein structure in combined feeds (hulless barley with bioethanol coproduct of wheat dried distillers grains with solubles) in relation to protein rumen degradation kinetics and intestinal availability in dairy cattle. J Dairy Sci 2012;95(6):3363–79
https://doi.org/10.3168/jds.2011-5308
13 Yu P. Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum Bicolor L.) using the synchrotron radiation infrared microspectroscopy technique. J Synchrotron Radiat 2011;18(Pt 5):790–801
https://doi.org/10.1107/S0909049511023727
14 Yu P, Theodoridou K, Xin H, Huang P, Lee YC, Wood BR. Synchrotron-based microspectroscopic study on the effects of heat treatments on cotyledon tissues in yellow-type canola (Brassica) seeds. J Agric Food Chem 2013;61(30):7234–41
https://doi.org/10.1021/jf4012517
15 Yu P. Plant-based food and feed protein structure changes induced by gene-transformation, heating and bio-ethanol processing: A synchrotron-based molecular structure and nutrition research program. Mol Nutr Food Res 2010;54(11):1535–45
https://doi.org/10.1002/mnfr.201000178
16 Yu P, Nuez-Ortín WG. Relationship of protein molecular structure to metabolisable proteins in different types of dried distillers grains with solubles: A novel approach. Br J Nutr 2010;104(10):1429–37
https://doi.org/10.1017/S0007114510002539
17 Yu P. Short communication: Relationship of carbohydrate molecular spectroscopic features to carbohydrate nutrient profiles in co-products from bioethanol production. J Dairy Sci 2012;95(4):2091–6
https://doi.org/10.3168/jds.2011-4885
18 Abeysekara S, Christensen DA, Niu Z, Theodoridou K, Yu P. Molecular structure, chemical and nutrient profiles and metabolic characteristics of the proteins and energy in new cool-season corn cultivars harvested as fresh forage for dairy cattle. J Dairy Sci 2013;96(10):6631–43
https://doi.org/10.3168/jds.2013-6841
19 Yu P, Gamage IH, Zhang X. New approaches and recent advances on characterization of chemical functional groups and structures, physiochemical property and nutritional values in feedstocks and by-products: Advanced spectroanalytical and modeling investigations. Appl Spectrosc Rev 2014;49(7):585–602
https://doi.org/10.1080/05704928.2013.879064
20 Becker PM, Yu P. What makes protein indigestible from tissue, cellular, and molecular structure aspects? Mol Nutr Food Res 2013;57(10):1695–707.
21 Yang L, Christensen DA, McKinnon JJ, Beattie AD, Xin H, Yu P. Investigating the molecular structural features of hulless barley (Hordeum vulgare L.) in relation to metabolic characteristics using synchrotron-based Fourier transform infrared microspectroscopy. J Agric Food Chem 2013;61(47):11250–60
https://doi.org/10.1021/jf403196z
22 Thedoridou K, Vail S, Yu P. Explore protein molecular structure in endosperm tissues in newly developed black and yellow type canola seeds by using synchrotron-based Fourier transform infrared microspectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2014;120:421–7
https://doi.org/10.1016/j.saa.2013.10.034
23 Dumas P. Synchrotron IR microspectroscopy: A multidisciplinary analytical technique. In: Proceedings of the 6th Annual Synchrotron CLS Users’ Meeting and Associated Synchrotron Workshops—WinXAS and Infrared; 2003 Nov 13–15; University of Saskatchewan, Canada; 2003.
24 Yu P, Block H, Niu Z, Doiron K. Rapid characterization of molecular chemistry, nutrient make-up and microlocation of internal seed tissue. J Synchrotron Radiat 2007;14(Pt 4):382–90
https://doi.org/10.1107/S0909049507014264
25 Kemp W. Organic spectroscopy. 3rd ed. New York: W.H. Freeman and Company; 1991
https://doi.org/10.1007/978-1-349-15203-2
26 Jackson M, Mantsch HH. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 1995;30(2):95–120
https://doi.org/10.3109/10409239509085140
27 Jackson M, Mantsch HH. Biomedical infrared spectroscopy. In: Mantsch HH, Chapman D, editors Infrared spectroscopy of biomolecules. New York: Wiley-Liss; 1996. p. 311–40.
28 Kneipp J, Miller LM, Joncic M, Kittel M, Lasch P, Beekes M, et al.In situ identification of protein structural changes in prion-infected tissue. Biochim Biophys Acta 2003;1639(3):152–8
https://doi.org/10.1016/j.bbadis.2003.08.005
29 Seguchi M, Takemoto M, Mizutani U, Ozawa M, Nakamura C, Matsumura Y. Effects of secondary structures of heated egg white protein on the binding between prime starch and tailings fractions in fresh wheat flour. Cereal Chem 2004;81(5):633–6
https://doi.org/10.1094/CCHEM.2004.81.5.633
30 Yu P. Multicomponent peak modeling of protein secondary structures: Comparison of gaussian with lorentzian analytical methods for plant feed and seed molecular biology and chemistry research. Appl Spectrosc 2005;59(11):1372–80
https://doi.org/10.1366/000370205774783151
31 Yu P. Molecular chemistry imaging to reveal structural features of various plant feed tissues. J Struct Biol 2005;150(1):81–9
https://doi.org/10.1016/j.jsb.2005.01.005
32 Yu P. Protein secondary structures (α-helix and β-sheet) at a cellular level and protein fractions in relation to rumen degradation behaviours of protein: A new approach. Br J Nutr 2005;94(5):655–65
https://doi.org/10.1079/BJN20051532
33 Yu P. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions. Spectroscopy 2006;20(5,6):229–51.
34 Yu P, McKinnon JJ, Christensen CR, Christensen DA. Imaging molecular chemistry of Pioneer corn. J Agric Food Chem 2004;52(24):7345–52
https://doi.org/10.1021/jf049291b
35 Yu P, Jonker A, Gruber M. Molecular basis of protein structure in proanthocyanidin and anthocyanin-enhanced Lc-transgenic alfalfa in relation to nutritive value using synchrotron-radiation FTIR microspectroscopy: A novel approach. Spectrochim Acta A Mol Biomol Spectrosc 2009;73(5):846–53
https://doi.org/10.1016/j.saa.2009.04.006
36 Jonker A, Gruber MY, McCaslin M, Wang Y, Coulman B, McKinnon JJ, et al.Nutrient composition and degradation profiles of anthocyanidin-accumulating Lc-alfalfa populations. Can J Anim Sci 2010;90(3):401–12
https://doi.org/10.4141/CJAS09110
37 Jonker A, Gruber MY, Wang Y, Coulman B, McKinnon JJ, Christensen DA,et al.Foam stability of leaves from anthocyanidin-accumulating Lc-alfalfa and relation to molecular structures detected by Fourier-transformed infrared-vibration spectroscopy. Grass Forage Sci 2012;67(3):369–81
https://doi.org/10.1111/j.1365-2494.2012.00853.x
38 Jonker A, Gruber MY, Wang Y, Coulman B, Azarfar A, McKinnon JJ, et al.Modeling degradation ratios and nutrient availability of anthocyanidin-accumulating Lc-alfalfa populations in dairy cows. J Dairy Sci 2011;94(3):1430–44
https://doi.org/10.3168/jds.2010-3604
39 Heendeniya RG, Gruber MY, Wang Y, Christensen DA, McKinnon JJ, Coulman B,et al.Effect of co-expression of Lc and C1 flavanoid regulatory genes in alfalfa on nutritive value and ruminal methane production. In: Proceedings of the 2014 ADSA-ASAS-CSAS Joint Annual Meeting; 2014 Jul 20–24; Kansas City, Mo, United States; 2014.
40 Heendeniya RG, Gruber MY, Wang Y, Christensen DA, McKinnon JJ, Coulman B, et al.Nutrient composition and degradation characteristics of anthocyanidin containing alfalfa transformed with Lc, C1, and Lc × C1 regulatory genes. In: Proceedings of the 2014 ADSA-ASAS-CSAS Joint Annual Meeting; 2014 Jul 20–24; Kansas City, Mo, United States; 2014.
41 Li X, Hannoufa A, Gruber MY, Zhang Y, Yu P. Effect of gene modification on protein and energy values in new alfalfa for dairy cattle. WCDS Adv Dairy Technol 2015;27:379.
42 Yu P, Niu Z, Damiran D. Protein molecular structures and protein fraction profiles of new coproducts from Bioethanol production: A novel approach. J Agric Food Chem 2010;58(6):3460–4
https://doi.org/10.1021/jf904179m
43 Peng Q, Khan NA, Wang Z, Zhang X, Yu P. Effect of thermal processing on estimated metabolizable protein supply to dairy cattle from Camelina seeds: Relationship with protein molecular structural changes. J Agric Food Chem 2014;62(33):8263–73
https://doi.org/10.1021/jf5013049
44 Huang X, Christensen C, Yu P. Effects of conditioning temperature and time during the pelleting process on feed molecular structure, pellet durability index, and metabolic features of co-products from bio-oil processing in dairy cows. J Dairy Sci 2015;98(7):4869–81
https://doi.org/10.3168/jds.2014-9290
45 Huang X, Khan NA, Zhang X, Yu P. Effects of canola meal pellet conditioning temperature and time on ruminal and intestinal digestion, hourly effective degradation ratio, and potential nitrogen to energy synchronization in dairy cows. J Dairy Sci 2015;98(12):8836–45
https://doi.org/10.3168/jds.2014-9295
46 Ban Y, Christensen DA, McKinnon JJ, Yu P. Chemical profiles, energy values, protein and carbohydrate fractions of new co-products (carinata meal) from bio-fuel processing as a new alternative feed for dairy cattle in comparison with canola meal. WCDS Adv Dairy Technol 2015;27:359.
47 Zhang X, Yu P. Using a non-invasive technique in nutrition: Synchrotron radiation infrared microspectroscopy spectroscopic characterization of oil seeds treated with different processing conditions on molecular spectral factors influencing nutrient delivery. J Agric Food Chem 2014;62(26):6199–205
https://doi.org/10.1021/jf501553g
[1] Zhen Cheng,Xuefeng Yan,Xilin Sun,Baozhong Shen,Sanjiv Sam Gambhir. Tumor Molecular Imaging with Nanoparticles[J]. Engineering, 2016, 2(1): 132-140.
[2] Kun Wang,Chongwei Chi,Zhenhua Hu,Muhan Liu,Hui Hui,Wenting Shang,Dong Peng,Shuang Zhang,Jinzuo Ye,Haixiao Liu,Jie Tian. Optical Molecular Imaging Frontiers in Oncology: The Pursuit of Accuracy and Sensitivity[J]. Engineering, 2015, 1(3): 309-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering