Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (5) : 738-752     https://doi.org/10.1016/J.ENG.2017.03.011
Research |
植物化学物质的生物功能及其在家畜中的应用研究——以Nrf2/Keap1系统为目标
覃思1,2, 侯德兴1,2,3()
1. Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
2. Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
3. The United Graduate School of Agricultural Sciences, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan
全文: PDF(1118 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 活性氧(ROS)对人类和其他动物健康的负面影响非常值得关注。ROS可能由机械伤害、热刺激、感染和化学刺激产生。核转录相关因子(Nrf2)及其伴侣蛋白Keap1组成的Nrf2/Keap1系统在抗氧化作用中扮演着重要角色。Nrf2/Keap1系统通过与抗氧化反应元件(ARE)相互作用,调控一系列解毒酶和抗氧化酶基因的表达来维持机体氧化还原的平衡状态。膳食植物化学物质在蔬菜、水果、谷物和草药中普遍存在,研究发现其有益健康,还可通过多种途径调节Nrf2介导的II相酶来提高家畜的生长性能和肉质。然而,关于植物化学物质作用效果的大量数据有些混乱,需要根据植物化学物质的功能和作用机制进行相应的分类。在本文中,我们首先介绍了植物化学物质的抗氧化性及其与Nrf2/Keap1系统的关系,并总结了植物化学物质通过靶向Nrf2/Keap1系统,对家畜生长性能、肉质和肠道菌群的影响。这些详尽的数据有助于阐述植物化学物质在家畜中潜在的生物功能特性。
 
关键词 植物化学物质生物功能Nrf2/Keap1系统生长性能肉质肠道菌群    
Abstract

Reactive oxygen species (ROS) can be caused by mechanical, thermal, infectious, and chemical stimuli, and their negative effects on the health of humans and other animals are of considerable concern. The nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) system plays a major role in maintaining the balance between the production and elimination of ROS via the regulation of a series of detoxifying and antioxidant enzyme gene expressions by means of the antioxidant response element (ARE). Dietary phytochemicals, which are generally found in vegetables, fruits, grains, and herbs, have been reported to have health benefits and to improve the growth performance and meat quality of farm animals through the regulation of Nrf2-mediated phase II enzymes in a variety of ways. However, the enormous quantity of somewhat chaotic data that is available on the effects of phytochemicals needs to be properly classified according to the functions or mechanisms of phytochemicals. In this review, we first introduce the antioxidant properties of phytochemicals and their relation to the Nrf2/Keap1 system. We then summarize the effects of phytochemicals on the growth performance, meat quality, and intestinal microbiota of farm animals via targeting the Nrf2/Keap1 system. These exhaustive data contribute to better illuminate the underlying biofunctional properties of phytochemicals in farm animals.

Keywords Phytochemical      Biofunction      Nrf2/Keap1 system      Growth performance      Meat quality      Intestinal microbiota     
基金资助: 
最新录用日期:    在线预览日期:    发布日期: 2017-11-08
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Si Qin
De-Xing Hou
引用本文:   
Si Qin,De-Xing Hou. The Biofunctions of Phytochemicals and Their Applications in Farm Animals: The Nrf2/Keap1 System as a Target[J]. Engineering, 2017, 3(5): 738-752.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.011     OR     http://engineering.org.cn/EN/Y2017/V3/I5/738
Fig.1  Schematic diagram of the molecular mechanisms underlying the modulation of the Keap1/Nrf2 pathway. (a) Under normal/basal conditions, Nrf2 is inhibited by the Keap1-mediated Cul3-Rbx1 ubiquitination system for general proteasomal degradation. Under an induced state/stimulation, Nrf2 is activated by the Keap1-independent or Keap1-dependent Nrf2 pathway. (b) The Keap1-independent pathway. The protein kinases (PKC, PI3K, MAPKs, GSK3, and PERK) can phosphorylate Nrf2, and some transcription factors bind to ARE in order to positively or negatively regulate the expressions of Nrf2/ARE-mediated genes (positive regulators include BRG1, AIB1, and Maf, and negative regulators include p53, p65, and cFos). Epigenetic modifications include DNA methylations of promoters, histone modifications such as acetylations or methylations, and microRNA tuning by transcriptional regulations. (c) Keap1-dependent pathway. The cysteine modifications in the locations of Cysteine 273, 288, and 151, ubiquitination, phosphorylation, and succination of Keap1 are minimally involved.
Classification Origin Compound Structure Dose Time Mechanism Model Refs.
Activation of Nrf2-ARE pathway
Flavonoid-type polyphenols Apple, tea, caper, lovage, onion Quercetin

0–40 µmol·L1 6 h ↑Keap1 modification, Nrf2 stability HepG2 cells [18]
100–200 µmol·L1 24 h, 48 h ↑p38 MAPK and ERK Human hepatocytes epithelial cells [19]
Celery, green pepper Luteolin

0–20 µmol·L1 24 h, 72 h ↑ERK1/2, HO-1, ARE binding PC12 cells [20]
Cocoa, red wine Procyanidin B2

10 µmol·L1 20 h ↑ERKs and p38 MAPK Human colonic cells [21]
Strawberry Fisetin

0–25 µmol·L1 NM ↑PKC-δ and p38 MAPK Human umbilical vein endothelial cells [22]
Citrus fruits Hesperidin

0–80 µmol·L1 24 h ↑ERK1/2 Human hepatic L02 cells [23]
Hops Xanthohumol

4 µmol·L1 24 h ↑Modification of Keap1 cysteine Murine Hepa1c1c7 cells [24]
Plant phenols Chalcone

10–25 µmol·L1 NM ↑Nrf2, HO-1 Endothelial cells [25]
Scutellaria baicalensis Baicalein

0–40 µmol·L1 9 h, 24 h ↑Nrf2, HO-1 HepG2 cells [26]
Artemisia Eupatilin

0–150 μmol·L1 16 h ↑ERK Feline ileal smooth muscle cells [27]
Sasa borealis Isoorientin

5 µg·mL1 0–6 h ↑PI3K/Akt HepG2 cells [28]
Vernonia anthelmintica, Dalbergia odorifera Butin

10 µg·mL1 12, 24 h ↑PI3K/Akt Chinese hamster lung fibroblast (V79-4) [29]
Inula helenium Phytoestrogen puerarin

0–100 µmol·L1 2–18 h ↑PI3K/Akt Hepa1c1c7 cells [30]
Fraxinus rhinchophylla Fraxetin

30–100 μmol·L1 24 h ↑Nrf2, HO-1 Vascular smooth muscle cells [31]
Mallotus philippinensis Rottlerin

1–10 μmol·L1 9 h ↑ERK and p38 MAPK HT29 cells [32]
Tea EGCG

20 µmol·L1 48 h ↑p38 MAPK and Akt B lymphoblasts [33]
50 µmol·L1 6 h ↑ERK and PI3K/Akt Bovine aortic endothelial cells [34]
Cocoa, tea Epicatechin

5–30 mg·kg1 BW 1 h, 6 h, 18 h ↑ERK and PI3K/Akt Ischemic damaged mice [35]
Tea, broccoli Kaempferol

0–10 µmol·L1 18 h ↑JNK, HO-1, GCLC Organ of Corti 1 (HEI-OC1) cells [36]
Wild grape Procyanidins

25 μg·mL1 1 h ↑p38 MAPK, PI3K/Akt HepG2 cells [37]
Non-flavonoid-type polyphenols Red grape Resveratrol

10 µmol·L1 24 h ↑Modification of Nrf2 and Keap1 A549 cells [38]
15 µmol·L1 0–6 h ↑ERK and PI3K PC12 cells [39]
Rosemary, common sage Carnosic acid

1–20 μmol·L1 0–1 h ↑p38 MAPK [40]
10 μmol·L1 1 h ↑S-alkylation of Keap1 [41]
Blueberries, grapes Pterostilbene

5 mg·kg1 BW 6 weeks ↑Nrf2, HO-1 Male BALB/c mice [42]
Cinnamomum cassia Presl Cinnamaldehyde

50–100 µmol·L1 0–12 h ↑Nrf2, HO-1 Endothelial cells [43]
American pokeweed, garlic Oleanolic acid

10–50 μmol·L1 0–2 h ↑Akt and ERK Primary rat vascular smooth muscle cells [44]
Inula helenium Alantolactone

0–10 µmol·L1 NM ↑PI3K and JNK Hepa1c1c7 mouse hepatoma cells [45]
Scrophulariaceae Acteoside

30 μmol·L1 0–12 h, 6 h ↑ERK and PI3K/Akt PC12 cells [46]
Tripterygium wilfordii Celastrol

0–1 μg·mL1 0.5 h ↑ERK and p38 MAPK HaCaT cells [47]
Euphorbia lagascae Piceatannol

30 μmol·L1 0–12 h ↑Akt and modification of Keap1 MCF10A cells [48]
Coffee Kahweol

0–10 µmol·L1 0–2 h ↑Akt and p38 MAPK SH-SY5Y cells [49]
Rhizoma coptidis Berberine

1–10 μmol·L1 0–2 h ↑PI3K/Akt, phosphorylation of Nrf2 Rat brain astrocyte cell line (RBA-1) [50]
Olive Hydroxytyrosol

50 μmol·L1 0–1 h ↑PI3K/Akt, MEK1/2-ERK1/2 Vascular endothelial cells [51]
0–200 μmol·L1 2–24 h ↑JNK Human retinal pigment [52]
Sesame seeds Sesamin and episesamin

0–10 µmol·L1 0–2 h ↑p38 MAPK Rat pheochromocytoma PC12 cells [53]
Spinach, green leafy vegetables Chlorophyllin

50 µmol·L1 0–2 h ↑PI3K/Akt Human umbilical vein endothelial cells [54]
Soybean Catechol estrogens

10 µmol·L1 3 h ↑Modification of Keap1 RAW264.7 cells [55]
Isothiocyanates and other phytochemicals Cruciferous vegetables Sulforaphane

0–200 µmol·L1 2 h ↑Cysteine thioacetylation of Keap1 Human Keap-1-transfected HEK293 cells [56]
20 µmol·L1 24 h ↑p38 MAPK isoforms HepG2 cells [57]
20 µmol·L1 1 h ↑ERK and PI3K Caco-2 cells [58]
0–2.5 µmol·L1 5 d ↑CpGs, demethylation of Nrf2 promoter, Nrf2, NQO1; ↓DNMT1/3a, HDAC1/4/5/7 TRAMP C1 cells [59]
Cruciferous vegetables PEITC

5 µmol·L1 12 h ↑ERK and JNK PC-3 cells [60]
Cruciferous vegetables I3C

6.25 µmol·L1 24 h ↑JNK HepG2-C8 cells [61]
Cruciferous vegetables DIM

0–5 µmol·L1 NM ↑CpGs, demethylation of Nrf2 promoter, Nrf2, NQO1, JNK TRAMP-C1 cells, TRAMP prostate tumors [62]
Garlic, onion Diallyl trisulfide

100 µmol·L1 1 h ↑Calcium-dependent signaling, ERK, p38 MAPK HepG2 cells [63]
Gardenia jasminoides Genipin

0–100 μmol·L1 24 h ↑PI3K-JNK1/2 RAW264.7 macrophages [64]
Commiphora mukul Guggulsterone

25 µmol·L1 0–2 h, 6 h ↑PI3K/Akt Human mammary epithelial cells [65]
Inhibition of Nrf2-ARE pathway
Flavonoid Celery, green pepper Luteolin (Lut) a

20 µmol·L1 24 h, 48 h ↑Nrf2 mRNA degradation A549, HCT116-OX, SW620OX, MDA-MB 231 cells [66,67]
Parsley, celery, celeriac Apigenin (Api) a

20 µmol·L1 14 d ↓p-Akt Tumor of mice [68]
Passiflora incarnata Chrysin (Chry) a

10–20 µmol·L1 24 h ↓p-Akt, p-ERK1/2, Nrf2 protein levels BEL-7402/ADM cells [69]
4-methoxychalcone a

5 µg·mL1 3–24 h ↓p-Akt (Thr308) A549 cells [70]
Tangerine peel 3',4',5',5,7-pentamethoxyflavone a

10–25 µmol·L1 24 h ↓p-ERK A549 cells [71]
Tea (EGCG) a

100 µmol·L1, 200 µmol·L1 24 h ↓Nrf2 protein level; ↑apoptosis A549 cells [72]
Brucea Brusatol (Bru)

10–300 nmol·L1 2 h ↓Nrf2 mRNA translation A549, Hepa1c1c7 cells [73]
Salvia Cryptotanshinone

5–10 µmol·L1 24 h NM H1299 cells [74]
Metformin (Met)

1–5 mmol·L1 24 h ↓pRaf, p-ERK1/2; ↑microRNA-34a; ↓Nrf2 HepG2, HeLa, A549, MCF-7 cells [75,76]
Mycotoxin ochratoxin A

5 µmol·L1 1 d, 3 d ↓Nuclear import of Nrf2; ↓DNA binding; ↑microRNA-32; ↓Nrf2 Human primary proximal tubule cells [77,78]
Leguminosae extract of fenugreek Trigonelline (Trig)

0.0001–1 mmol·L1 3 h ↓Nuclear import of Nrf2 Panc1, Colo357, MiaPaca2 cells [79,80]
Tab.1  The molecular mechanisms of Nrf2 regulation by phytochemicals.
Function classification Phytochemical Concentration Animal/meat tested Effect Refs.
Growth performances
Resveratrol and resveratrol-rich grape extract 100?mg·(kg·d)−1 Pigs Lower fat deposition, improve myocardial function or glucose metabolism, prevent development of atherosclerotic lesions and coronary heart disease [91?93]
Polyphenol-rich grape seed and grape marc meal Pigs No change in Nrf2/Keap1 pathway [94,95]
Grape seed proanthocyanidin extract Broilers Improve weight gain and lower mortality of broilers infected with Eimeria tenella [96]
Thymol, tannic acid, or gallic acid 200?mg, 5?g·kg1 diet Broilers Improve the feed utilization and final BW [97]
Grape pomace 60?g·kg1 diet Broilers Improve feed efficiency [98]
Green tea polyphenols Broilers Improve the feed conversion ratio and impair feed efficiency without corticosterone treatment [99]
Resveratrol 1% of diet Broilers Impair body weight gain and feed conversion ratio [100]
Quercetin 0.2–0.6?g·kg1 diet Hens Increase laying rate, decrease feed-to-egg ratio [101]
Tea polyphenols 5–15?mg·kg1 diet Laying hens Prevent the adverse effect of vanadium on egg quality [102]
Pomegranate-extract polyphenols 5–10?g·d1 Dairy cows Decreased the digestibility of protein and fat [103]
Polyphenol-rich grape seed and grape marc meal extract Dairy cows Improve milk performance [104]
Green tea and curcuma extract Dairy cows Cause a reduction of fat content in the liver and an increase in milk performance [105]
Meat quality
Antioxidant Quercetin, a flavonoid; ampelopsin, isoflavones, a polyphenols mix 10?mg·(kg·d)1, 1?g·kg1 diet Pigs Reduce plasma lipid peroxidation and lower MDA level [94,106,107]
Tea polyphenols, grape seed proanthocyanidin extract 1000?mg·kg1 diet Broilers and laying hens Reduction of MDA and TBARS concentrations, induction of GPx activity [96,98,102]
Extracts of rosemary, grape skin, green tea, and coffee 50?200 ppm Pork patties Reduce lipid oxidation, reduce values of TBARS and hexanal [108]
Extracts of white peony, red peony, moutan peony, sappan wood, rehmannia, and angelica 0.5%?2.0% Raw and cooked goat meat patties Reduce lipid oxidation [109]
Extracts of olive leaf, date pits, and rosemary leaf Raw beef patties, ground beef, and buffalo meat patties Reduce TBARS value, lipid oxidation, and oxymyoglobin oxidation [110?112]
Adzuki bean extract and grape seed extract Pork and beef sausages Reduce lipid oxidation and TBARS values [113,114]
Garlic juice 1% and 3% Emulsified sausage Decrease peroxide value, TBARS, and residual nitrite [115]
Sage essential oil 3% Raw pork Decrease the TBARS value [116]
Oregano essential oil 3% Pork and beef Lower levels of oxidation [116]
Anti-inflammatory Grape seed and grape marc meal extract or hop extract Growing pigs Downregulation of various pro-inflammatory genes [95]
Cocoa powder 2.5?g, 10?g, 20?g Pigs Decrease gene expression of TNF-α and Toll-like receptors [117]
Tea polyphenols 0.03–0.09?g·kg1 BW Broilers Downregulation of the genes of IL-1β, IL-4, IL-10, TNF-α, and IFN-γ [118]
Pomegranate-extract polyphenols 5–10?g·d1 Pigs Increase the secretion of IFN-γ and IL-4, improve total IgG response [119]
Grape seed and grape marc meal extract Dairy cows Downregulation of the marker of endoplasmic reticulum stress, FGF-21, and fat accumulation in the liver [104]
Sensory White peony extract 0.5%–2.0% Raw and cooked meat patties Increase the redness value (a* value) [109]
Rosemary extract 300–500?ppm Raw frozen sausage Maintain the red color [120]
Green tea extract 300?mg·kg1 meat Raw patties Decrease a* value [121]
Cooked patties Delay rancid flavor development [122]
Grape seed extract 0.01%–0.02% Beef patties Reduce visual green discoloration [123]
Myrtle extract 10% Beef patties Prevent color changes [124]
Eleutherine americana extract 2.7–10.8?mg·(100?g) 1 Cooked pork Increase a* value [125]
Adzuki bean extract 0.2% Cured and uncured cooked pork sausages Increase a* value but decrease lightness (L* value) and yellowness (b* value) [126]
Green tea extract 500–6000?ppm Raw and cooked goat meat Increase a* value [127]
Grape seed extract Decrease a* value [128]
Pepper extract Cooked pork Maintain a* value [128]
Curry leaf extract 5?mL·(500?g) 1 meat Raw ground pork Decrease L* value and a* value while increasing b* value [129]
Rosemary leaf extract 130?ppm Raw and cooked ground buffalo meat patties Stabilized color [130]
Plum products Variety of meat and poultry products Minor effect on flavor but caused color change [131,132]
Grape seed extract Meat products Significant change in color [133]
Intestinal microbiota
Cocoa powder Pigs Increase the abundance of Lactobacillus, Bifidobacterium spp.,Bacteroides-Prevotella, and Faecalibacteriumprausnitzii [117,134]
Grape pomace concentrate Broilers Increase the abundance of Enterococcus and decrease that of Clostridium [98]
Quercetin Laying hens Decrease the total aerobes and coliforms and increase the abundance of Bifidobacterium [101]
Tea polyphenols Pigs Increase the amount of lactobacilli and decrease that of the total bacteria, Bacteroidaceae, andClostridium perfringens [102]
Calves Decrease Bifidobacterium spp., Lactobacillus spp., and Clostridium perfringens [135]
Tab.2  The effects of phytochemicals on the growth performances, meat quality, and intestinal microbiota of farm animals.
1 Molyneux RJ, Lee ST, Gardner DR, Panter KE, James LF. Phytochemicals: The good, the bad and the ugly? Phytochemistry 2007;68(22–24):2973–85
https://doi.org/10.1016/j.phytochem.2007.09.004
2 Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 2003;3(10):768–80
https://doi.org/10.1038/nrc1189
3 Lampe JW. Spicing up a vegetarian diet: Chemopreventive effects of phytochemicals. Am J Clin Nutr 2003;78(3 Suppl):579S–83S.
4 Fraser GE. Vegetarian diets: What do we know of their effects on common chronic diseases? Am J Clin Nutr 2009;89(5):1607S–12S
https://doi.org/10.3945/ajcn.2009.26736K
5 Wasserman WW, Fahl WE. Functional antioxidant responsive elements. Proc Natl Acad Sci USA 1997;94(10):5361–6
https://doi.org/10.1073/pnas.94.10.5361
6 Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 2010;13(11):1713–48
https://doi.org/10.1089/ars.2010.3221
7 Chorley BN, Campbell MR, Wang X, Karaca M, Sambandan D, Bangura F, et al.Identification of novel NRF2-regulated genes by ChIP-Seq: Influence on retinoid X receptor alpha. Nucleic Acids Res 2012;40(15):7416–29
https://doi.org/10.1093/nar/gks409
8 Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011;85(4):241–72
https://doi.org/10.1007/s00204-011-0674-5
9 Dinkova-Kostova AT, Massiah MA, Bozak RE, Hicks RJ, Talalay P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci USA 2001;98(6):3404–9
https://doi.org/10.1073/pnas.051632198
10 Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, et al.The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 2009;29(2):493–502
https://doi.org/10.1128/MCB.01080-08
11 Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 2003;23(22):8137–51
https://doi.org/10.1128/MCB.23.22.8137-8151.2003
12 Furukawa M, Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 2005;25(1):162–71
https://doi.org/10.1128/MCB.25.1.162-171.2005
13 Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med 2015;88(Pt B):101–7.
14 Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: Characterization of the two-site molecular recognition model. Mol Cell Biol 2006;26(8):2887–900
https://doi.org/10.1128/MCB.26.8.2887-2900.2006
15 Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, et al.The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010;12(3):213–23
https://doi.org/10.1038/ncb2021
16 Adam J, Hatipoglu E, O’Flaherty L, Ternette N, Sahgal N, Lockstone H, et al.Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: Roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 2011;20(4):524–37
https://doi.org/10.1016/j.ccr.2011.09.006
17 Jain AK, Mahajan S, Jaiswal AK. Phosphorylation and dephosphorylation of tyrosine 141 regulate stability and degradation of INrf2: A novel mechanism in Nrf2 activation. J Biol Chem 2008;283(25):17712–20
https://doi.org/10.1074/jbc.M709854200
18 Tanigawa S, Fujii M, Hou DX. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med 2007;42(11):1690–703
https://doi.org/10.1016/j.freeradbiomed.2007.02.017
19 Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, et al.Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 2007;47(2):253–61
https://doi.org/10.1016/j.jhep.2007.02.008
20 Lin CW, Wu MJ, Liu IY, Su JD, Yen JH. Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression. J Agric Food Chem 2010;58(7):4477–86
https://doi.org/10.1021/jf904061x
21 Rodríguez-Ramiro I, Ramos S, Bravo L, Goya L, Martín MÁ. Procyanidin B2 induces Nrf2 translocation and glutathione S-transferase P1 expression via ERKs and p38-MAPK pathways and protect human colonic cells against oxidative stress. Eur J Nutr 2012;51(7):881–92
https://doi.org/10.1007/s00394-011-0269-1
22 Lee SE, Jeong SI, Yang H, Park CS, Jin YH, Park YS. Fisetin induces Nrf2-mediated HO-1 expression through PKC-δ and p38 in human umbilical vein endothelial cells. J Cell Biochem 2011;112(9):2352–60
https://doi.org/10.1002/jcb.23158
23 Chen MC, Ye YY, Ji G, Liu JW. Hesperidin upregulates heme oxygenase-1 to attenuate hydrogen peroxide-induced cell damage in hepatic L02 cells. J Agric Food Chem 2010;58(6):3330–5
https://doi.org/10.1021/jf904549s
24 Dietz BM, Kang YH, Liu G, Eggler AL, Yao P, Chadwick LR, et al.Xanthohumol isolated from Humulus lupulus inhibits menadione-induced DNA damage through induction of quinone reductase. Chem Res Toxicol 2005;18(8):1296–305
https://doi.org/10.1021/tx050058x
25 Liu YC, Hsieh CW, Wu CC, Wung BS. Chalcone inhibits the activation of NF-κB and STAT3 in endothelial cells via endogenous electrophile. Life Sci 2007;80(15):1420–30
https://doi.org/10.1016/j.lfs.2006.12.040
26 Qin S, Chen J, Tanigawa S, Hou DX. Gene expression profiling and pathway network analysis of hepatic metabolic enzymes targeted by baicalein. J Ethnopharmacol 2012;140(1):131–40
https://doi.org/10.1016/j.jep.2011.12.046
27 Song HJ, Shin CY, Oh TY, Sohn UD. The protective effect of eupatilin on indomethacin-induced cell damage in cultured feline ileal smooth muscle cells: Involvement of HO-1 and ERK. J Ethnopharmacol 2008;118(1):94–101
https://doi.org/10.1016/j.jep.2008.03.010
28 Lim JH, Park HS, Choi JK, Lee IS, Choi HJ. Isoorientin induces Nrf2 pathway-driven antioxidant response through phosphatidylinositol 3-kinase signaling. Arch Pharm Res 2007;30(12):1590–8
https://doi.org/10.1007/BF02977329
29 Zhang R, Chae S, Lee JH, Hyun JW. The cytoprotective effect of butin against oxidative stress is mediated by the up-regulation of manganese superoxide dismutase expression through a PI3K/Akt/Nrf2-dependent pathway. J Cell Biochem 2012;113(6):1987–97
https://doi.org/10.1002/jcb.24068
30 Hwang YP, Jeong HG. Mechanism of phytoestrogen puerarin-mediated cytoprotection following oxidative injury: Estrogen receptor-dependent up-regulation of PI3K/Akt and HO-1. Toxicol Appl Pharmacol 2008;233(3):371–81
https://doi.org/10.1016/j.taap.2008.09.006
31 Thuong PT, Pokharel YR, Lee MY, Kim SK, Bae K, Su ND, et al.Dual anti-oxidative effects of fraxetin isolated from Fraxinus rhinchophylla. Biol Pharm Bull 2009;32(9):1527–32
https://doi.org/10.1248/bpb.32.1527
32 Park EJ, Lim JH, Nam SI, Park JW, Kwon TK. Rottlerin induces heme oxygenase-1 (HO-1) up-regulation through reactive oxygen species (ROS) dependent and PKC δ-independent pathway in human colon cancer HT29 cells. Biochimie 2010;92(1):110–5
https://doi.org/10.1016/j.biochi.2009.10.001
33 Andreadi CK, Howells LM, Atherfold PA, Manson MM. Involvement of Nrf2, p38, B-Raf, and nuclear factor-κB, but not phosphatidylinositol 3-kinase, in induction of hemeoxygenase-1 by dietary polyphenols. Mol Pharmacol 2006;69(3):1033–40.
34 Wu CC, Hsu MC, Hsieh CW, Lin JB, Lai PH, Wung BS. Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways. Life Sci 2006;78(25):2889–97
https://doi.org/10.1016/j.lfs.2005.11.013
35 Granado-Serrano AB, Martín MA, Haegeman G, Goya L, Bravo L, Ramos S. Epicatechin induces NF-κB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) via phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) signalling in HepG2 cells. Br J Nutr 2010;103(2):168–79
https://doi.org/10.1017/S0007114509991747
36 Gao SS, Choi BM, Chen XY, Zhu RZ, Kim Y, So H, et al.Kaempferol suppresses cisplatin-induced apoptosis via inductions of heme oxygenase-1 and glutamate-cysteine ligase catalytic subunit in HEI-OC1 cell. Pharm Res 2010;27(2):235–45
https://doi.org/10.1007/s11095-009-0003-3
37 Bak MJ, Jun M, Jeong WS. Procyanidins from wild grape (Vitis amurensis) seeds regulate ARE-mediated enzyme expression via Nrf2 coupled with p38 and PI3K/Akt pathway in HepG2 cells. Int J Mol Sci 2012;13(1):801–18
https://doi.org/10.3390/ijms13010801
38 Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I. Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smoke-mediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2008;294(3):L478–88
https://doi.org/10.1152/ajplung.00361.2007
39 Chen CY, Jang JH, Li MH, Surh YJ. Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 2005;331(4):993–1000
https://doi.org/10.1016/j.bbrc.2005.03.237
40 Tsai CW, Lin CY, Wang YJ. Carnosic acid induces the NAD(P)H: Quinone oxidoreductase 1 expression in rat clone 9 cells through the p38/nuclear factor erythroid-2 related factor 2 pathway. J Nutr 2011;141(12):2119–25
https://doi.org/10.3945/jn.111.146779
41 Satoh T, Kosaka K, Itoh K, Kobayashi A, Yamamoto M, Shimojo Y, et al.Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem 2008;104(4):1116–31
https://doi.org/10.1111/j.1471-4159.2007.05039.x
42 Chiou YS, Tsai ML, Nagabhushanam K, Wang YJ, Wu CH, Ho CT.et al.Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway. J Agric Food Chem 2011;59(6):2725–33
https://doi.org/10.1021/jf2000103
43 Liao BC, Hsieh CW, Liu YC, Tzeng TT, Sun YW, Wung BS. Cinnamaldehyde inhibits the tumor necrosis factor-α-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-κB activation: Effects upon IκB and Nrf2. Toxicol Appl Pharmacol 2008;229(2):161–71
https://doi.org/10.1016/j.taap.2008.01.021
44 Feng J, Zhang P, Chen X, He G. PI3K and ERK/Nrf2 pathways are involved in oleanolic acid-induced heme oxygenase-1 expression in rat vascular smooth muscle cells. J Cell Biochem 2011;112(6):1524–31
https://doi.org/10.1002/jcb.23065
45 Seo JY, Lim SS, Kim JR, Lim JS, Ha YR, Lee IA, et al.Nrf2-mediated induction of detoxifying enzymes by alantolactone present in Inula helenium. Phytother Res 2008;22(11):1500–5
https://doi.org/10.1002/ptr.2521
46 Wang HQ, Xu YX, Zhu CQ. Upregulation of heme oxygenase-1 by acteoside through ERK and PI3 K/Akt pathway confer neuroprotection against β-amyloid-induced neurotoxicity. Neurotox Res 2012;21(4):368–78
https://doi.org/10.1007/s12640-011-9292-5
47 Seo WY, Goh AR, Ju SM, Song HY, Kwon DJ, Jun JG, et al.Celastrol induces expression of heme oxygenase-1 through ROS/Nrf2/ARE signaling in the HaCaT cells. Biochem Biophys Res Commun 2011;407(3):535–40
https://doi.org/10.1016/j.bbrc.2011.03.053
48 Lee HH, Park SA, Almazari I, Kim EH, Na HK, Surh YJ. Piceatannol induces heme oxygenase-1 expression in human mammary epithelial cells through activation of ARE-driven Nrf2 signaling. Arch Biochem Biophys 2010;501(1):142–50
https://doi.org/10.1016/j.abb.2010.06.011
49 Hwang YP, Jeong HG. The coffee diterpene kahweol induces heme oxygenase-1 via the PI3K and p38/Nrf2 pathway to protect human dopaminergic neurons from 6-hydroxydopamine-derived oxidative stress. FEBS Lett 2008;582(17):2655–62
https://doi.org/10.1016/j.febslet.2008.06.045
50 Chen JH, Huang SM, Tan TW, Lin HY, Chen PY, Yeh WL, et al.Berberine induces heme oxygenase-1 up-regulation through phosphatidylinositol 3-kinase/AKT and NF-E2-related factor-2 signaling pathway in astrocytes. Int Immunopharmacol 2012;12(1):94–100
https://doi.org/10.1016/j.intimp.2011.10.019
51 Zrelli H, Matsuoka M, Kitazaki S, Araki M, Kusunoki M, Zarrouk M, et al.Hydroxytyrosol induces proliferation and cytoprotection against oxidative injury in vascular endothelial cells: Role of Nrf2 activation and HO-1 induction. J Agric Food Chem 2011;59(9):4473–82
https://doi.org/10.1021/jf104151d
52 Zou X, Feng Z, Li Y, Wang Y, Wertz K, Weber P, et al.Stimulation of GSH synthesis to prevent oxidative stress-induced apoptosis by hydroxytyrosol in human retinal pigment epithelial cells: Activation of Nrf2 and JNK-p62/SQSTM1 pathways. J Nutr Biochem 2012;23(8):994–1006
https://doi.org/10.1016/j.jnutbio.2011.05.006
53 Hamada N, Tanaka A, Fujita Y, Itoh T, Ono Y, Kitagawa Y, et al.Involvement of heme oxygenase-1 induction via Nrf2/ARE activation in protection against H2O2-induced PC12 cell death by a metabolite of sesamin contained in sesame seeds. Bioorg Med Chem 2011;19(6):1959–65
https://doi.org/10.1016/j.bmc.2011.01.059
54 Zhang Y, Guan L, Wang X, Wen T, Xing J, Zhao J. Protection of chlorophyllin against oxidative damage by inducing HO-1 and NQO1 expression mediated by PI3K/Akt and Nrf2. Free Radic Res 2008;42(4):362–71
https://doi.org/10.1080/10715760801993076
55 Sumi D, Numasawa Y, Endo A, Iwamoto N, Kumagai Y. Catechol estrogens mediated activation of Nrf2 through covalent modification of its quinone metabolite to Keap1. J Toxicol Sci 2009;34(6):627–35
https://doi.org/10.2131/jts.34.627
56 Hong F, Freeman ML, Liebler DC. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol 2005;18(12):1917–26
https://doi.org/10.1021/tx0502138
57 Keum YS, Yu S, Chang PP, Yuan X, Kim JH, Xu C, et al.Mechanism of action of sulforaphane: Inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Res. 2006;66(17):8804–13
https://doi.org/10.1158/0008-5472.CAN-05-3513
58 Jakubíková J, Sedlák J, Mithen R, Bao Y. Role of PI3K/Akt and MEK/ERK signaling pathways in sulforaphane- and erucin-induced phase II enzymes and MRP2 transcription, G2/M arrest and cell death in Caco-2 cells. Biochem Pharmacol 2005;69(11):1543–52
https://doi.org/10.1016/j.bcp.2005.03.015
59 Zhang C, Su ZY, Khor TO, Shu L, Kong AN. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem Pharmacol 2013;85(9):1398–404
https://doi.org/10.1016/j.bcp.2013.02.010
60 Xu C, Yuan X, Pan Z, Shen G, Kim JH, Yu S, et al.Mechanism of action of isothiocyanates: The induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol Cancer Ther 2006;5(8):1918–26
https://doi.org/10.1158/1535-7163.MCT-05-0497
61 Saw CL, Cintrón M, Wu TY, Guo Y, Huang Y, Jeong WS, et al.Pharmacodynamics of dietary phytochemical indoles I3C and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates. Biopharm Drug Dispos 2011;32(5):289–300
https://doi.org/10.1002/bdd.759
62 Wu TY, Khor TO, Su ZY, Saw CL, Shu L, Cheung KL, et al.Epigenetic modifications of Nrf2 by 3,3'-diindolylmethane in vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors. AAPS J 2013;15(3):864–74
https://doi.org/10.1208/s12248-013-9493-3
63 Chen C, Pung D, Leong V, Hebbar V, Shen G, Nair S, et al.Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: Effect of chemical structure and stress signals. Free Radic Biol Med 2004;37(10):1578–90
https://doi.org/10.1016/j.freeradbiomed.2004.07.021
64 Jeon WK, Hong HY, Kim BC. Genipin up-regulates heme oxygenase-1 via PI3-kinase-JNK1/2-Nrf2 signaling pathway to enhance the anti-inflammatory capacity in RAW264.7 macrophages. Arch Biochem Biophys 2011;512(2):119–25
https://doi.org/10.1016/j.abb.2011.05.016
65 Almazari I, Park JM, Park SA, Suh JY, Na HK, Cha YN, et al.Guggulsterone induces heme oxygenase-1 expression through activation of Nrf2 in human mammary epithelial cells: PTEN as a putative target. Carcinogenesis 2012;33(2):368–76
https://doi.org/10.1093/carcin/bgr259
66 Tang X, Wang H, Fan L, Wu X, Xin A, Ren H, et al.Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic Biol Med 2011;50(11):1599–609
https://doi.org/10.1016/j.freeradbiomed.2011.03.008
67 Chian S, Li YY, Wang XJ, Tang XW. Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac J Cancer Prev 2014;15(6):2911–6
https://doi.org/10.7314/APJCP.2014.15.6.2911
68 Gao AM, Ke ZP, Wang JN, Yang JY, Chen SY, Chen H. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 2013;34(8):1806–14
https://doi.org/10.1093/carcin/bgt108
69 Gao AM, Ke ZP, Shi F, Sun GC, Chen H. Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem Biol Interact 2013;206(1):100–8
https://doi.org/10.1016/j.cbi.2013.08.008
70 Lim J, Lee SH, Cho S, Lee IS, Kang BY, Choi HJ. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells. Mol Cells 2013;36(4):340–6
https://doi.org/10.1007/s10059-013-0123-9
71 Hou X, Bai X, Gou X, Zeng H, Xia C, Zhuang W,et al.3',4',5',5,7-pentamethoxyflavone sensitizes cisplatin-resistant A549 cells to cisplatin by inhibition of Nrf2 pathway. Mol Cells 2015;38(5):396–401
https://doi.org/10.14348/molcells.2015.2183
72 Kweon MH, Adhami VM, Lee JS, Mukhtar H. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem 2006;281(44):33761–72
https://doi.org/10.1074/jbc.M604748200
73 Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, et al.Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci USA 2011;108(4):1433–8
https://doi.org/10.1073/pnas.1014275108
74 Xia C, Bai X, Hou X, Gou X, Wang Y, Zeng H, et al.Cryptotanshinone reverses cisplatin resistance of human lung carcinoma A549 cells through down-regulating Nrf2 pathway. Cell Physiol Biochem 2015;37(2):816–24
https://doi.org/10.1159/000430398
75 Do MT, Kim HG, Khanal T, Choi JH, Kim DH, Jeong TC, et al.et al.et al.Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol Appl Pharmacol 2013;271(2):229–38
https://doi.org/10.1016/j.taap.2013.05.010
76 Do MT, Kim HG, Choi JH, Jeong HG. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic Biol Med 2014;74:21–34
https://doi.org/10.1016/j.freeradbiomed.2014.06.010
77 Cavin C, Delatour T, Marin-Kuan M, Fenaille F, Holzhäuser D, Guignard G, et al.Ochratoxin A-mediated DNA and protein damage: Roles of nitrosative and oxidative stresses. Toxicol Sci 2009;110(1):84–94
https://doi.org/10.1093/toxsci/kfp090
78 Boesch-Saadatmandi C, Wagner AE, Graeser AC, Hundhausen C, Wolffram S, Rimbach G. Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J Anim Physiol Anim Nutr (Berl) 2009;93(5):547–54
https://doi.org/10.1111/j.1439-0396.2008.00838.x
79 Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, et al.Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 2013;32(40):4825–35
https://doi.org/10.1038/onc.2012.493
80 Boettler U, Sommerfeld K, Volz N, Pahlke G, Teller N, Somoza V, et al.Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem 2011;22(5):426–40
https://doi.org/10.1016/j.jnutbio.2010.03.011
81 Tanigawa S, Lee CH, Lin CS, Ku CC, Hasegawa H, Qin S, et al.Jun dimerization protein 2 is a critical component of the Nrf2/MafK complex regulating the response to ROS homeostasis. Cell Death Dis 2013;4:e921
https://doi.org/10.1038/cddis.2013.448
82 Liu GH, Qu J, Shen X. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 2008;1783(5):713–27
https://doi.org/10.1016/j.bbamcr.2008.01.002
83 Shankar S, Kumar D, Srivastava RK. Epigenetic modifications by dietary phytochemicals: Implications for personalized nutrition. Pharmacol Ther 2013;138(1):1–17
https://doi.org/10.1016/j.pharmthera.2012.11.002
84 Su ZY, Khor TO, Shu L, Lee JH, Saw CL, Wu TY, et al.Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and Radix angelica sinensis via promoter CpG demethylation. Chem Res Toxicol 2013;26(3):477–85
https://doi.org/10.1021/tx300524p
85 Khor TO, Huang Y, Wu TY, Shu L, Lee J, Kong AN. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol 2011;82(9):1073–8
https://doi.org/10.1016/j.bcp.2011.07.065
86 Paredes-Gonzalez X, Fuentes F, Su ZY, Kong AN. Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6 P+ cells through epigenetics modifications. AAPS J 2014;16(4):727–35
https://doi.org/10.1208/s12248-014-9613-8
87 Su ZY, Zhang C, Lee JH, Shu L, Wu TY, Khor TO, et al.Requirement and epigenetics reprogramming of Nrf2 in suppression of tumor promoter TPA-induced mouse skin cell transformation by sulforaphane. Cancer Prev Res (Phila) 2014;7(3):319–29
https://doi.org/10.1158/1940-6207.CAPR-13-0313-T
88 Wang L, Zhang C, Guo Y, Su ZY, Yang Y, Shu L, et al.Blocking of JB6 cell transformation by tanshinone IIA: Epigenetic reactivation of Nrf2 antioxidative stress pathway. AAPS J 2014;16(6):1214–25
https://doi.org/10.1208/s12248-014-9666-8
89 Zhu J, Wang H, Chen F, Fu J, Xu Y, Hou Y, et al.An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy. Free Radic Biol Med 2016;99:544–56
https://doi.org/10.1016/j.freeradbiomed.2016.09.010
90 Gessner DK, Ringseis R, Eder K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J Anim Physiol Anim Nutr (Berl).Epub 2016 Jul 25.
91 Burgess TA, Robich MP, Chu LM, Bianchi C, Sellke FW. Improving glucose metabolism with resveratrol in a swine model of metabolic syndrome through alteration of signaling pathways in the liver and skeletal muscle. Arch Surg 2011;146(5):556–64
https://doi.org/10.1001/archsurg.2011.100
92 Azorín-Ortuño M, Yañéz-Gascón MJ, Pallarés FJ, Rivera J, González-Sarrías A, Larrosa M, et al.A dietary resveratrol-rich grape extract prevents the developing of atherosclerotic lesions in the aorta of pigs fed an atherogenic diet. J Agric Food Chem 2012;60(22):5609–20
https://doi.org/10.1021/jf301154q
93 Robich MP, Osipov RM, Nezafat R, Feng J, Clements RT, Bianchi C, et al.Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial ischemia. Circulation 2010;122(11 Suppl 1):S142–9
https://doi.org/10.1161/CIRCULATIONAHA.109.920132
94 Gessner DK, Ringseis R, Siebers M, Keller J, Kloster J, Wen G, et al.Inhibition of the pro-inflammatory NF-κB pathway by a grape seed and grape marc meal extract in intestinal epithelial cells. J Anim Physiol Anim Nutr (Berl) 2012;96(6):1074–83
https://doi.org/10.1111/j.1439-0396.2011.01222.x
95 Gessner DK, Fiesel A, Most E, Dinges J, Wen G, Ringseis R, et al.Supplementation of a grape seed and grape marc meal extract decreases activities of the oxidative stress-responsive transcription factors NF-κB and Nrf2 in the duodenal mucosa of pigs. Acta Vet Scand 2013;55:18
https://doi.org/10.1186/1751-0147-55-18
96 Wang ML, Suo X, Gu JH, Zhang WW, Fang Q, Wang X. Influence of grape seed proanthocyanidin extract in broiler chickens: Effect on chicken coccidiosis and antioxidant status. Poult Sci 2008;87(11):2273–80
https://doi.org/10.3382/ps.2008-00077
97 Starčević K, Krstulović L, Brozić D, Maurić M, Stojević Z, Mikulec Ž, et al.Production performance, meat composition and oxidative susceptibility in broiler chicken fed with different phenolic compounds. J Sci Food Agric 2015;95(6):1172–8
https://doi.org/10.1002/jsfa.6805
98 Viveros A, Chamorro S, Pizarro M, Arija I, Centeno C, Brenes A. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult Sci 2011;90(3):566–78
https://doi.org/10.3382/ps.2010-00889
99 Eid YZ, Ohtsuka A, Hayashi K. Tea polyphenols reduce glucocorticoid-induced growth inhibition and oxidative stress in broiler chickens. Br Poult Sci 2003;44(1):127–32
https://doi.org/10.1080/0007166031000085427
100 Sridhar M, Suganthi RU, Thammiaha V. Effect of dietary resveratrol in ameliorating aflatoxin B1-induced changes in broiler birds. J Anim Physiol Anim Nutr (Berl) 2015;99(6):1094–104
https://doi.org/10.1111/jpn.12260
101 Liu HN, Liu Y, Hu LL, Suo YL, Zhang L, Jin F, et al.Effects of dietary supplementation of quercetin on performance, egg quality, cecal microflora populations, and antioxidant status in laying hens. Poult Sci 2014;93(2):347–53
https://doi.org/10.3382/ps.2013-03225
102 Yuan ZH, Zhang KY, Ding XM, Luo YH, Bai SP, Zeng QF, et al.Effect of tea polyphenols on production performance, egg quality, and hepatic antioxidant status of laying hens in vanadium-containing diets. Poult Sci 2016;95(7):1709–17
https://doi.org/10.3382/ps/pew097
103 Oliveira RA, Narciso CD, Bisinotto RS, Perdomo MC, Ballou MA, Dreher M, et al.Effects of feeding polyphenols from pomegranate extract on health, growth, nutrient digestion, and immunocompetence of calves. J Dairy Sci 2010;93(9):4280–91
https://doi.org/10.3168/jds.2010-3314
104 Gessner DK, Gröne B, Couturier A, Rosenbaum S, Hillen S, Becker S, et al.Dietary fish oil inhibits pro-inflammatory and ER stress signalling pathways in the liver of sows during lactation. PLoS One 2015;10(9):e0137684
https://doi.org/10.1371/journal.pone.0137684
105 Winkler A, Gessner DK, Koch C, Romberg FJ, Dusel G, Herzog E, et al.Effects of a plant product consisting of green tea and curcuma extract on milk production and the expression of hepatic genes involved in endoplasmic stress response and inflammation in dairy cows. Arch Anim Nutr 2015;69(6):425–41
https://doi.org/10.1080/1745039X.2015.1093873
106 Luehring M, Blank R, Wolffram S. Vitamin E-sparing and vitamin E-independent antioxidative effects of the flavonol quercetin in growing pigs. Anim Feed Sci Tech 2011;169(3–4):199–207
https://doi.org/10.1016/j.anifeedsci.2011.06.006
107 Hou X, Zhang J, Ahmad H, Zhang H, Xu Z, Wang T. Evaluation of antioxidant activities of ampelopsin and its protective effect in lipopolysaccharide-induced oxidative stress piglets. PLoS One 2014;9(9):e108314
https://doi.org/10.1371/journal.pone.0108314
108 Nissen LR, Byrne DV, Bertelsen G, Skibsted LH. The antioxidative activity of plant extracts in cooked pork patties as evaluated by descriptive sensory profiling and chemical analysis. Meat Sci 2004;68(3):485–95
https://doi.org/10.1016/j.meatsci.2004.05.004
109 Hayes JE, Stepanyan V, O’Grady MN, Allen P, Kerry JP. Evaluation of the effects of selected phytochemicals on quality indices and sensorial properties of raw and cooked pork stored in different packaging systems. Meat Sci 2010;85(2):289–96
https://doi.org/10.1016/j.meatsci.2010.01.016
110 Hayes JE, Stepanyan V, Allen P, O’Grady MN, Kerry JP. Effect of lutein, sesamol, ellagic acid and olive leaf extract on the quality and shelf-life stability of packaged raw minced beef patties. Meat Sci 2010;84(4):613–20
https://doi.org/10.1016/j.meatsci.2009.10.020
111 Krah DL. A simplified multiwell plate assay for the measurement of hepatitis A virus infectivity. Biologicals 1991;19(3):223–7
https://doi.org/10.1016/1045-1056(91)90039-M
112 Naveena BM, Vaithiyanathan S, Muthukumar M, Sen AR, Kumar YP, Kiran M, et al.Relationship between the solubility, dosage and antioxidant capacity of carnosic acid in raw and cooked ground buffalo meat patties and chicken patties. Meat Sci 2013;95(2):195–202
https://doi.org/10.1016/j.meatsci.2013.04.043
113 Jayawardana BC, Hirano T, Han KH, Ishii H, Okada T, Shibayama S, et al.Utilization of adzuki bean extract as a natural antioxidant in cured and uncured cooked pork sausages. Meat Sci 2011;89(2):150–3
https://doi.org/10.1016/j.meatsci.2011.04.005
114 Kulkarni S, DeSantos FA, Kattamuri S, Rossi SJ, Brewer MS. Effect of grape seed extract on oxidative, color and sensory stability of a pre-cooked, frozen, re-heated beef sausage model system. Meat Sci 2011;88(1):139–44
https://doi.org/10.1016/j.meatsci.2010.12.014
115 Choi SH, Kwon HC, An DJ, Park JR, Oh DH. Nitrite contents and storage properties of sausage added with green tea powder. Kor J Food Sci Ani Resour 2003;23(4):299–308.
116 Fasseas MK, Mountzouris KC, Tarantilis PA, Polissiou M, Zervas G. Antioxidant activity in meat treated with oregano and sage essential oils. Food Chem 2008;106(3):1188–94
https://doi.org/10.1016/j.foodchem.2007.07.060
117 Jang S, Sun J, Chen P, Lakshman S, Molokin A, Harnly JM, et al.Flavanol-enriched cocoa powder alters the intestinal microbiota, tissue and fluid metabolite profiles, and intestinal gene expression in pigs. J Nutr 2016;146(4):673–80
https://doi.org/10.3945/jn.115.222968
118 Li HL, Li ZJ, Wei ZS, Liu T, Zou XZ, Liao Y, et al.Long-term effects of oral tea polyphenols and Lactobacillus brevis M8 on biochemical parameters, digestive enzymes, and cytokines expression in broilers. J Zhejiang Univ Sci B 2015;16(2):1019–26
https://doi.org/10.1631/jzus.B1500160
119 Oliveira RA, Narciso CD, Bisinotto RS, Perdomo MC, Ballou MA, Dreher M, et al.Effects of feeding polyphenols from pomegranate extract on health, growth, nutrient digestion, and immunocompetence of calves. J Dairy Sci 2010;93(9):4280–91
https://doi.org/10.3168/jds.2010-3314
120 Aksu MI, ÖZER H. Effects of lyophilized water extract of Satureja hortensis on the shelf life and quality properties of ground beef. J Food Process Pres 2013;37(5):777–83.
121 Han J, Rhee KS. Antioxidant properties of selected Oriental non-culinary/nutraceutical herb extracts as evaluated in raw and cooked meat. Meat Sci 2005;70(1):25–33
https://doi.org/10.1016/j.meatsci.2004.11.017
122 Bañón S, Díaz P, Rodríguez M, Garrido MD, Price A. Ascorbate, green tea and grape seed extracts increase the shelf life of low sulphite beef patties. Meat Sci 2007;77(4):626–33
https://doi.org/10.1016/j.meatsci.2007.05.015
123 Rojas MC, Brewer MS. Effect of natural antioxidants on oxidative stability of cooked, refrigerated beef and pork. J Food Sci 2007;72(4):S282–8
https://doi.org/10.1111/j.1750-3841.2007.00335.x
124 Akarpat A, Turhan S, Ustun NS. Effects of hot-water extracts from myrtle, rosemary, nettle and lemon balm leaves on lipid oxidation and color of beef patties during frozen storage. J Food Process Pres 2008;32(1):117–32
https://doi.org/10.1111/j.1745-4549.2007.00169.x
125 Ifesan BO, Siripongvutikorn S, Hutadilok-Towatana N, Voravuthikunchai SP. Evaluation of the ability of Eleutherine americana crude extract as natural food additive in cooked pork. J Food Sci 2009;74(7):M352–7
https://doi.org/10.1111/j.1750-3841.2009.01254.x
126 Jayathilakan K, Sharma GK, Radhakrishna K, Bawa AS. Antioxidant potential of synthetic and natural antioxidants and its effect on warmed-over-flavour in different species of meat. Food Chem 2007;105(3):908–16
https://doi.org/10.1016/j.foodchem.2007.04.068
127 Rababah TM, Ereifej KI, Alhamad MN, Al-Qudah KM, Rousan LM, Al-Mahasneh MA, et al.Effects of green tea and grape seed and TBHQ on physicochemical properties of Baladi goat meats. Int J Food Prop 2011;14(6):1208–16
https://doi.org/10.1080/10942911003637327
128 Wójciak KM, Dolatowski ZJ, Okoń A. The effect of water plant extracts addition on the oxidative stability of meat products. Acta Sci Pol Technol Aliment 2011;10(2):175–88.
129 Biswas AK, Chatli MK, Sahoo J. Antioxidant potential of curry (Murraya koenigii L.) and mint (Mentha spicata) leaf extracts and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage. Food Chem 2012;133(2):467–72
https://doi.org/10.1016/j.foodchem.2012.01.073
130 Shah MA, Bosco SJ, Mir SA. Plant extracts as natural antioxidants in meat and meat products. Meat Sci 2014;98(1):21–33
https://doi.org/10.1016/j.meatsci.2014.03.020
131 Nuñez de Gonzalez MT, Boleman RM, Miller RK, Keeton JT, Rhee KS. Antioxidant properties of dried plum ingredients in raw and precooked pork sausage. J Food Sci 2008;73(5):H63–71
https://doi.org/10.1111/j.1750-3841.2008.00744.x
132 Nuñez de Gonzalez MT, Hafley BS, Boleman RM, Miller RM, Rhee KS, Keeton JT. Qualitative effects of fresh and dried plum ingredients on vacuum-packaged, sliced hams. Meat Sci 2009;83(1):74–81
https://doi.org/10.1016/j.meatsci.2009.04.002
133 Ahn J, Grün IU, Fernando LN. Antioxidant properties of natural plant extracts containing polyphenolic compounds in cooked ground beef. J Food Sci 2002;67(4):1364–9
https://doi.org/10.1111/j.1365-2621.2002.tb10290.x
134 Magistrelli D, Zanchi R, Malagutti L, Galassi G, Canzi E, Rosi F. Effects of cocoa husk feeding on the composition of swine intestinal microbiota. J Agric Food Chem 2016;64(10):2046–52
https://doi.org/10.1021/acs.jafc.5b05732
135 Ishihara N, Chu DC, Akachi S, Juneja LR. Improvement of intestinal microflora balance and prevention of digestive and respiratory organ diseases in calves by green tea extracts. Livest Prod Sci 2001;68(2–3):217–29
https://doi.org/10.1016/S0301-6226(00)00233-5
136 Lahucky R, Nuernberg K, Kovac L, Bucko O, Nuernberg G. Assessment of the antioxidant potential of selected plant extracts—In vitro and in vivo experiments on pork. Meat Sci 2010;85(4):779–84
https://doi.org/10.1016/j.meatsci.2010.04.004
137 Karre L, Lopez K, Getty KJ. Natural antioxidants in meat and poultry products. Meat Sci 2013;94(2):220–7
https://doi.org/10.1016/j.meatsci.2013.01.007
138 Surai PF. Polyphenol compounds in the chicken/animal diet: From the past to the future. J Anim Physiol Anim Nutr (Berl) 2014;98(1):19–31
https://doi.org/10.1111/jpn.12070
139 Moreno-Indias I, Sánchez-Alcoholado L, Pérez-Martínez P, Andrés-Lacueva C, Cardona F, Tinahones F, et al.Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct 2016;7(4):1775–87
https://doi.org/10.1039/C5FO00886G
140 Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem 2013;61(40):9517–33
https://doi.org/10.1021/jf402506c
141 Patra AK, Saxena J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr Res Rev 2009;22(2):204–19
https://doi.org/10.1017/S0954422409990163
142 Neyrinck AM, Etxeberria U, Taminiau B, Daube G, Van Hul M, Everard A, et al.Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Mol Nutr Food Res 2017;61(1). Epub 2016 Jun 1
https://doi.org/10.1002/mnfr.201500899
143 You Q, Chen F, Wang X, Luo PG, Jiang Y. Inhibitory effects of muscadine anthocyanins on α-glucosidase and pancreatic lipase activities. J Agric Food Chem 2011;59(17):9506–11
https://doi.org/10.1021/jf201452v
144 Yilmazer-Musa M, Griffith AM, Michels AJ, Schneider E, Frei B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J Agric Food Chem 2012;60(36):8924–9
https://doi.org/10.1021/jf301147n
145 Dunnick JK, Hailey JR. Toxicity and carcinogenicity studies of quercetin, a natural component of foods. Fundam Appl Toxicol 1992;19(3):423–31
https://doi.org/10.1016/0272-0590(92)90181-G
146 Inoue H, Akiyama S, Maeda-Yamamoto M, Nesumi A, Tanaka T, Murakami A. High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodium-induced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions. Cell Stress Chaperones 2011;16(6):653–62
https://doi.org/10.1007/s12192-011-0280-8
147 Hirose M, Hoshiya T, Mizoguchi Y, Nakamura A, Akagi K, Shirai T. Green tea catechins enhance tumor development in the colon without effects in the lung or thyroid after pretreatment with 1,2-dimethylhydrazine or 2,2'-dihydroxy- di- n-propylnitrosamine in male F344 rats. Cancer Lett 2001;168(1):23–9
https://doi.org/10.1016/S0304-3835(01)00502-X
148 Hagiwara A, Hirose M, Takahashi S, Ogawa K, Shirai T, Ito N. F orestomach and kidney carcinogenicity of caffeic acid in F344 rats and C57BL/6N × C3H/HeN F1 mice. Cancer Res 1991;51(20):5655–60.
149 Uruno A, Furusawa Y, Yagishita Y, Fukutomi T, Muramatsu H, Negishi T, et al.The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol Cell Biol 2013;33(15):2996–3010
https://doi.org/10.1128/MCB.00225-13
150 Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014;39(4):199–218
https://doi.org/10.1016/j.tibs.2014.02.002
151 Cardaci S, Filomeni G, Ciriolo MR. Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 2012;125(Pt 9):2115–25
https://doi.org/10.1242/jcs.095216
152 Singh A, Happel C, Manna SK, Acquaah-Mensah G, Carrerero J, Kumar S, et al.Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J Clin Invest 2013;123(7):2921–34
https://doi.org/10.1172/JCI66353
153 Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 2015;88(Pt B):179–88.
154 Yang CS, Zhang J, Zhang L, Huang J, Wang Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol Nutr Food Res 2016;60(1):160–74
https://doi.org/10.1002/mnfr.201500428
[1] Bo Zhang, Licui Chu, Hong Liu, Chunyuan Xie, Shiyan Qiao, Xiangfang Zeng. Leucine Supplementation in a Chronically Protein-Restricted Diet Enhances Muscle Weight and Postprandial Protein Synthesis of Skeletal Muscle by Promoting the mTOR Pathway in Adult Rats[J]. Engineering, 2017, 3(5): 760-765.
[2] Yulan Wang, Baohong Wang, Junfang Wu, Xiangyang Jiang, Huiru Tang, Ole H. Nielsen. Modulation of Gut Microbiota in Pathological States[J]. Engineering, 2017, 3(1): 83-89.
[3] Guishuai Lv, Ningtao Cheng, Hongyang Wang. The Gut Microbiota, Tumorigenesis, and Liver Diseases[J]. Engineering, 2017, 3(1): 110-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering