Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 385-392     https://doi.org/10.1016/J.ENG.2017.03.013
Research |
钾/锰助剂对氮掺杂碳纳米管负载铁基催化剂在CO2加氢过程中的影响研究
Kangvansura Praewpilin1,Chew Ly May2,Kongmark Chanapa3,Santawaja Phatchada4,Ruland Holger2,Xia Wei2,Schulz Hans5,Worayingyong Attera3,Muhler Martin2()
1. Scientific Equipment Center, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
2. Laboratory of Industrial Chemistry, Ruhr-University Bochum, Bochum 44780, Germany
3. Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
4. Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
5. Engler-Bunte-Institute, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
全文: PDF(4082 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

氮掺杂碳纳米管(NCNTs) 作为载体负载铁(Fe) 纳米颗粒,可应用于CO 2多相催化加氢反应(633 K和25 bar)。当将钾(K) 和锰(Mn) 作为助催化剂时,Fe/NCNT 展现出优异的CO2 加氢性能,在体积空速(GHSV) 为3.1 L·(g·h)–1 时转化率可达34.9%。当使用K 作为助催化剂时,反应对烯烃和短链烷烃具有高的选择性。当K 和Mn 同时作为助催化剂时,其催化活性能够稳定地维持60 h。助催化剂Mn 的结构效应通过X 射线衍射、氢气程序升温还原以及近边X 射线吸收精细结构进行表征。助催化剂Mn 不仅能够稳定中间态FeO,且能降低程序升温还原的起始温度。通过探针反应NH3 的催化分解来表征助催化剂效应。当K 和Mn 作为助催化剂时,Fe/NCNT 具有最好的催化活性。在还原条件下,当K 作为助催化剂时,Fe/NCNT 具有最优异的热稳定性。

关键词 CO2 加氢铁基催化剂n 型碳纳米管Mn 助剂K 助剂    
Abstract

Nitrogen-doped carbon nanotubes (NCNTs) were used as a support for iron (Fe) nanoparticles applied in carbon dioxide (CO2) hydrogenation at 633 K and 25 bar (1 bar= 105 Pa). The Fe/NCNT catalyst promoted with both potassium (K) and manganese (Mn) showed high performance in CO2 hydrogenation, reaching 34.9% conversion with a gas hourly space velocity (GHSV) of 3.1 L·(g·h)−1. Product selectivities were high for olefin products and low for short-chain alkanes for the K-promoted catalysts. When Fe/NCNT catalyst was promoted with both K and Mn, the catalytic activity was stable for 60 h of reaction time. The structural effect of the Mn promoter was demonstrated by X-ray diffraction (XRD), temperature-programmed reduction (TPR) with molecular hydrogen (H2), and in situ X-ray absorption near-edge structure (XANES) analysis. The Mn promoter stabilized wüstite (FeO) as an intermediate and lowered the TPR onset temperature. Catalytic ammonia (NH3) decomposition was used as an additional probe reaction for characterizing the promoter effects. The Fe/NCNT catalyst promoted with both K and Mn had the highest catalytic activity, and the Mn-promoted Fe/NCNT catalysts had the highest thermal stability under reducing conditions.

Keywords CO2 hydrogenation      Iron catalyst      Nitrogen-doped carbon nanotubes      Manganese promoter      Potassium promoter     
基金资助: 
通讯作者: Muhler Martin     E-mail: muhler@techem.rub.de
最新录用日期:    发布日期: 2017-06-30
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Praewpilin Kangvansura
Ly May Chew
Chanapa Kongmark
Phatchada Santawaja
Holger Ruland
Wei Xia
Hans Schulz
Attera Worayingyong
Martin Muhler
引用本文:   
Praewpilin Kangvansura,Ly May Chew,Chanapa Kongmark, et al. Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation[J]. Engineering, 2017, 3(3): 385-392.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.013     OR     http://engineering.org.cn/EN/Y2017/V3/I3/385
Sample Weight content (%)
Fe K Mn
Fe/NCNT 34.2
K/Fe/NCNT 31.2 1.3
Mn/Fe/NCNT 32.8 7.1
K/Mn/Fe/NCNT 22.5 1.0 5.4
Tab.1  Composition of metals in the catalysts [32].
Fig.1  H2-TPR profiles of the calcined (a) Fe/NCNT, (b) K/Fe/NCNT, (c) Mn/Fe/NCNT, and (d) K/Mn/Fe/NCNT precursors before reaction.
Fig.2  XANES spectra of (a) Fe/NCNT, (b) K/Fe/NCNT, (c) Mn/Fe/NCNT, and (d) K/Mn/Fe/NCNT during heating from 323 K to 923 K (10 K·min−1) using a flow rate of 4 cm3·min−1 of H2 and 80.1 cm3·min−1 of Ar.
Fig.3  Phase evolution of the Fe catalysts under in situ XANES reduction conditions: 4 cm3·min−1 of H2 and 80.1 cm3·min−1 of Ar, heating from 323 K to 923 K with a heating rate of 10 K·min−1 and holding for 2 h as a function of temperature. (a) Fe/NCNT; (b) K/Fe/NCNT; (c) Mn/Fe/NCNT; and (d) K/Mn/Fe/NCNT.
Fig.4  Degree of NH3 conversion as a function of temperature over unpromoted and promoted Fe nanoparticles supported on NCNTs.
Fig.5  XRD patterns of (a) Fe/NCNT, (b) K/Fe/NCNT, (c) Mn/Fe/NCNT, and (d) K/Mn/Fe/NCNT after CO2 hydrogenation at 633 K and 25 bar for 60 h.
Fig.6  (a) CO2 conversion as a function of time on stream and (b) product selectivities.
Catalyst Product selectivity (%) C2=–C5=/C2–C5 α XCO2 (%)
CO C1 C2 C3 C4 C5+ Alcohol
Fe/NCNT 38.4 39.8 12.1 6.3 1.9 1.2 0.2 0.09 0.29 25.4
K/Fe/NCNT 74.6 5.6 5.2 5.3 3.1 3.7 2.0 0.87 0.44 31.8
Mn/Fe/NCNT 48.5 35.6 9.3 4.3 1.3 1.0 0.1 0.11 0.34 27.6
K/Mn/Fe/NCNT 72.1 5.9 5.2 5.9 3.7 4.9 2.4 0.89 0.45 30.1
Tab.2  Product selectivities, olefin selectivities in the C2–C5 range, chain-growth probabilities (α), and CO2 conversion (XCO2) over the iron catalysts after 60 h time on stream.
Fig.7  (a) CO2 conversion as a function of time on stream and (b) product selectivities resulting from CO2 hydrogenation over K/Mn/Fe/NCNT with different residence times.
Catalyst Product selectivity (%) C2=–C5=/C2–C5 α XCO2 (%)
CO C1 C2 C3 C4 C5+ Alcohol
K/Mn/Fe/NCNTa 72.1 5.9 5.2 5.9 3.7 4.9 2.4 0.89 0.45 30.1
K/Mn/Fe/NCNTb 50.5 9.9 9.3 11.1 6.4 7.8 4.9 0.90 0.45 31.0
K/Mn/Fe/NCNTc 29.5 14.0 12.7 14.9 8.7 11.0 8.4 0.90 0.47 34.9
Tab.3  Product distribution over K/Mn/Fe/NCNT after 60 h time on stream.
1 Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 2011;40(7):3703–27
https://doi.org/10.1039/c1cs15008a
2 Chew LM, Kangvansura P, Ruland H, Schulte HJ, Somsen C, Xia W, et al.Effect of nitrogen doping on the reducibility, activity and selectivity of carbon nanotube-supported iron catalysts applied in CO2 hydrogenation. Appl Catal A Gen 2014;482:163–70
https://doi.org/10.1016/j.apcata.2014.05.037
3 Schulz H, Riedel T, Schaub G. Fischer-Tropsch principles of co-hydrogenation on iron catalysts. Top Catal 2005;32:117–24
https://doi.org/10.1007/s11244-005-2883-8
4 Schulz H. Comparing Fischer-Tropsch synthesis on iron- and cobalt catalysts: The dynamics of structure and function. Stud Surf Sci Catal 2007;163:177–99
https://doi.org/10.1016/S0167-2991(07)80479-4
5 Abbaslou RMM, Tavassoli A, Soltan J, Dalai AK. Iron catalysts supported on carbon nanotubes for Fischer-Tropsch synthesis: Effect of catalytic site position. Appl Catal A Gen 2009;367(1–2):47–52
https://doi.org/10.1016/j.apcata.2009.07.025
6 Riedel T, Schulz H, Schaub G, Jun KW, Hwang JS, Lee KW. Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases: The episodes of formation of the Fischer-Tropsch regime and construction of the catalyst. Top Catal 2003;26(1):41–54
https://doi.org/10.1023/B:TOCA.0000012986.46680.28
7 Riedel T, Claeys M, Schulz H, Schaub G, Nam SS, Jun KW, et al.Comparative study of Fischer-Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts. Appl Catal A Gen 1999;186(1–2):201–13
https://doi.org/10.1016/S0926-860X(99)00173-8
8 Srinivas S, Malik RK, Mahajani SM. Fischer-Tropsch synthesis using bio-syngas and CO2. Energy Sustain Dev 2007;11(4):66–71
https://doi.org/10.1016/S0973-0826(08)60411-1
9 Chen W, Fan Z, Pan X, Bao X. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. J Am Chem Soc 2008;130(29):9414–9
https://doi.org/10.1021/ja8008192
10 de Smit E, Beale AM, Nikitenko S, Weckhuysen BM. Local and long range order in promoted iron-based Fischer-Tropsch catalysts: A combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study. J Catal 2009;262:244–56
https://doi.org/10.1016/j.jcat.2008.12.021
11 Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J. Fischer-Tropsch synthesis by nano-structured iron catalyst. J Nat Gas Chem 2010;19(3):284–92
https://doi.org/10.1016/S1003-9953(09)60059-1
12 Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J. Deactivation studies of nano-structured iron catalyst in Fischer-Tropsch synthesis. J Nat Gas Chem 2010;19(3):333–40
https://doi.org/10.1016/S1003-9953(09)60061-X
13 de Smit E, Cinquini F, Beale AM, Safonova OV, van Beek W, Sautet P, et al.Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling μ c. J Am Chem Soc 2010;132(42):14928–41
https://doi.org/10.1021/ja105853q
14 Xiong H, Moyo M, Motchelaho MA, Jewell LL, Coville NJ. Fischer-Tropsch synthesis over model iron catalysts supported on carbon spheres: The effect of iron precursor, support pretreatment, catalyst preparation method and promoters. Appl Catal A Gen 2010;388(1–2):168–78
https://doi.org/10.1016/j.apcata.2010.08.039
15 Yu G, Sun B, Pei Y, Xie S, Yan S, Qiao M, et al.FexOy@C spheres as an excellent catalyst for Fischer-Tropsch synthesis. J Am Chem Soc 2010;132(3):935–7
https://doi.org/10.1021/ja906370b
16 Dorner RW, Hardy DR, Williams FW, Willauer HD. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons. Energy Environ Sci 2010;3(7):884–90
https://doi.org/10.1039/c001514h
17 Dorner RW, Hardy DR, Williams FW, Willauer HD. K and Mn doped iron-based CO2 hydrogenation catalysts: Detection of KAlH4 as part of the catalyst’s active phase. Appl Catal A Gen 2010;373(1–2):112–21
https://doi.org/10.1016/j.apcata.2009.11.005
18 Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ. Fischer-Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal A Gen 2005;287(1):60–7
https://doi.org/10.1016/j.apcata.2005.03.029
19 Ribeiro MC, Jacobs G, Davis BH, Cronauer DC, Kropf AJ, Marshall CL. Fischer-Tropsch synthesis: An in situ TPR-EXAFS/XANES investigation of the influence of group I alkali promoters on the local atomic and electronic structure of carburized iron/silica catalysts. J Phys Chem C 2010;114(17):7895–903
https://doi.org/10.1021/jp911856q
20 Tao Z, Yang Y, Wan H, Li T, An X, Xiang H, et al.Effect of manganese on a potassium-promoted iron-based Fischer-Tropsch synthesis catalyst. Catal Lett 2007;114(3):161–8
https://doi.org/10.1007/s10562-007-9060-6
21 Campos A, Lohitharn N, Roy A, Lotero E, Goodwin JG, Spivey JJ. An activity and XANES study of Mn-promoted, Fe-based Fischer-Tropsch catalysts. Appl Catal A Gen 2010;375(1):12–6
https://doi.org/10.1016/j.apcata.2009.11.015
22 Ribeiro MC, Jacobs G, Pendyala R, Davis BH, Cronauer DC, Kropf AJ, et al.Fischer-Tropsch synthesis: Influence of Mn on the carburization rates and activities of Fe-based catalysts by TPR-EXAFS/XANES and catalyst testing. J Phys Chem C 2011;115:4783–92
https://doi.org/10.1021/jp111728h
23 Davis BH. Fischer-Tropsch synthesis: Reaction mechanisms for iron catalysts. Catal Today 2009;141(1–2):25–33
https://doi.org/10.1016/j.cattod.2008.03.005
24 Torres Galvis HM, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012;335(6070):835–8
https://doi.org/10.1126/science.1215614
25 Tavasoli A, Sadagiani K, Khorashe F, Seifkordi A, Rohani A, Nakhaeipour A. Cobalt supported on carbon nanotubes—A promising novel Fischer-Tropsch synthesis catalyst. Fuel Process Technol 2008;89(5):491–8
https://doi.org/10.1016/j.fuproc.2007.09.008
26 van Steen E, Prinsloo FF. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts. Catal Today 2002;71(3–4):327–34
https://doi.org/10.1016/S0920-5861(01)00459-X
27 Schulte HJ, Graf B, Xia W, Muhler M. Nitrogen- and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer-Tropsch synthesis. ChemCatChem 2012;4(3):350–5
https://doi.org/10.1002/cctc.201100275
28 Dorner RW, Hardy DR, Williams FW, Willauer HD. Catalytic CO2 hydrogenation to feedstock chemicals for jet fuel synthesis using multi-walled carbon nanotubes as support. In: Hu YH, editor Advances in CO2 conversion and utilization. Washington DC: American Chemical Society; 2010. p. 125–39
https://doi.org/10.1021/bk-2010-1056.ch008
29 Kundu S, Xia W, Busser W, Becker M, Schmidt DA, Havenith M, et al.The formation of nitrogen-containing functional groups on carbon nanotube surfaces: A quantitative XPS and TPD study. Phys Chem Chem Phys 2010;12(17):4351–9
https://doi.org/10.1039/b923651a
30 Kowalczyk Z, Sentek J, Jodzis S, Muhler M, Hinrichsen O. Effect of potassium on the kinetics of ammonia synthesis and decomposition over fused iron catalyst at atmospheric pressure. J Catal 1997;169(2):407–14
https://doi.org/10.1006/jcat.1997.1664
31 Arabczyk W, Zamlynny J. Study of the ammonia decomposition over iron catalysts. Catal Lett 1999;60(3):167–71
https://doi.org/10.1023/A:1019007024041
32 Kangvansura P, Chew LM, Saengsui W, Santawaja P, Poo-arporn Y, Muhler M, et al.Product distribution of CO2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N-functionalized carbon nanotubes. Catal Today 2016;275:59–65
https://doi.org/10.1016/j.cattod.2016.02.045
33 Xia W, Jin C, Kundu S, Muhler M. A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon 2009;47(3):919–22
https://doi.org/10.1016/j.carbon.2008.12.026
34 Boot LA, van Dillen AJ, Geus JW, van Buren FR. Iron-based dehydrogenation catalysts supported on zirconia. I. Preparation and characterization. J Catal 1996;163(1):186–94
https://doi.org/10.1006/jcat.1996.0318
35 Poo-arporn Y, Chirawatkul P, Saengsui W, Chotiwan S, Kityakarn S, Klinkhieo S, et al.Time-resolved XAS (Bonn-SUT-SLRI) beamline at SLRI. J Synchrotron Radiat 2012;19(6):937–43
https://doi.org/10.1107/S090904951204109X
36 Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 2005;12(4):537–41
https://doi.org/10.1107/S0909049505012719
37 Chew LM, Ruland H, Schulte HJ, Xia W, Muhler M. CO2 hydrogenation to hydrocarbons over iron nanoparticles supported on oxygen-functionalized carbon nanotubes. J Chem Sci 2014;126(2):481–6
https://doi.org/10.1007/s12039-014-0591-2
38 Wimmers OJ, Arnoldy P, Moulijn JA. Determination of the reduction mechanism by temperature-programmed reduction: Application to small iron oxide (Fe2O3) particles. J Phys Chem C 1986;90(7):1331–7
https://doi.org/10.1021/j100398a025
39 Pernicone N, Ferrero F, Rossetti I, Forni L, Canton P, Riello P, et al.Wüstite as a new precursor of industrial ammonia synthesis catalysts. Appl Catal A Gen 2003;251(1):121–9
https://doi.org/10.1016/S0926-860X(03)00313-2
40 Yeo SC, Han SS, Lee HM. Mechanistic investigation of the catalytic decomposition of ammonia (NH3) on an Fe(100) surface: A DFT study. J Phys Chem C 2014;118(10):5309–16
https://doi.org/10.1021/jp410947d
41 Jedynak A, Kowalczyk Z, Szmigiel D, Rarog W, Zielinski J. Ammonia decomposition over the carbon-based iron catalyst promoted with potassium. Appl Catal A Gen 2002;237(1–2):223–6
https://doi.org/10.1016/S0926-860X(02)00330-7
42 Dad M, Fredriksson H, van de Loosdrecht J, Thuene P, Niemantsverdriet J. Stabilization of iron by manganese promoters in uniform bimetallic FeMn Fischer-Tropsch model catalysts prepared from colloidal nanoparticles. Catal Struct React 2015;1(2):101–9
https://doi.org/10.1179/2055075815Y.0000000003
43 Grzybek T, Klinik J, Papp H, Baerns M. Characterization of Cu and K containing Fe/Mn oxide catalysts for Fischer-Tropsch synthesis. Chem Eng Technol 1990;14(1):156–61
https://doi.org/10.1002/ceat.270130122
44 Lee JF, Chern WS, Lee MD. Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium. Can J Chem Eng 1992;70(3):511–5
https://doi.org/10.1002/cjce.5450700314
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585-.
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583-584.
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578-579.
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580-582.
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467-476.
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552-558.
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434-435.
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445-451.
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281-282.
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379-384.
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416-422.
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423-427.
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393-401.
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285-289.
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365-378.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering