Please wait a minute...
投稿  |   English  | 
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 393-401
Research |
复合镍基催化剂催化CO2 光热甲烷化反应中氧化铈和氧化钛的助催化作用
Teng Kho Ee1,Jantarang Salina1,Zheng Zhaoke1,Scott Jason1(),Amal Rose1()
1. Author_FootNote
2. Particles and Catalysis Research Laboratory, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
全文: PDF(1680 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息

太阳能驱动二氧化碳(CO2) 转化为燃料是解决CO2 减排和快速增长的世界能源需求的理想方案。本文利用光照辐射镍基负载催化剂床层引发加热效应以促进CO2 的转化,研究了不同组成的氧化铈-氧化钛复合氧化物载体及其对光热CO2 转化的影响。提高光热CO2 甲烷化活性的两个至关重要的因素分别是:①优化的镍颗粒负载对于高活性催化面积及用于加热催化床层的更高的光吸收能力是必需的;②载体上的缺陷位对于促进CO2 吸附及随后的活化是必需的。载体中的钛对维持掺杂氧化钛的氧化铈上的氧空位缺陷起着关键作用。当氧化铈和氧化钛混合比例理想时,再结合高光照吸收以及稳定的还原状态,有利于CO2 吸附及随后高效光热CO2 甲烷化反应的发生。


Solar-powered carbon dioxide (CO2)-to-fuel conversion presents itself as an ideal solution for both CO2 mitigation and the rapidly growing world energy demand. In this work, the heating effect of light irradiation onto a bed of supported nickel (Ni) catalyst was utilized to facilitate CO2 conversion. Ceria (CeO2)-titania (TiO2) oxide supports of different compositions were employed and their effects on photothermal CO2 conversion examined. Two factors are shown to be crucial for instigating photothermal CO2 methanation activity: ① Fine nickel deposits are required for both higher active catalyst area and greater light absorption capacity for the initial heating of the catalyst bed; and ② the presence of defect sites on the support are necessary to promote adsorption of CO2 for its subsequent activation. Titania inclusion within the support plays a crucial role in maintaining the oxygen vacancy defect sites on the (titanium-doped) cerium oxide. The combination of elevated light absorption and stabilized reduced states for CO2 adsorption subsequently invokes effective photothermal CO2 methanation when the ceria and titania are blended in the ideal ratio(s).

Keywords Photothermal      CO2 reduction      Nickel      Ceria      Titania     
通讯作者: Scott Jason,Amal Rose     E-mail:;
最新录用日期:    发布日期: 2017-06-30
Ee Teng Kho
Salina Jantarang
Zhaoke Zheng
Jason Scott
Rose Amal
Ee Teng Kho,Salina Jantarang,Zhaoke Zheng, et al. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393-401.
网址:     OR
Fig.1  Configuration of the batch-type photothermal reactor for CO2 methanation. The inset shows the structure within the reactor. GC: gas chromatograph.
Fig.2  UV-Vis-NIR absorption spectra (no offset) of nickel catalysts supported on sol-gel-synthesized ceria-titania mixed oxides (black curves): (a) Ni/TiO2_SG, (b) Ni/20Ce-80Ti_SG, (c) Ni/50Ce-50Ti_SG, (d) Ni/80Ce-20Ti_SG, and (e) Ni/CeO2_SG. The spectra for the corresponding neat supports are shown in red.
Fig.3  Nickel deposit size distributions on sol-gel-synthesized ceria-titania mixed-oxide supports with different compositions: (a) Ni/TiO2_SG, (b) Ni/20Ce-80Ti_SG, (c) Ni/50Ce-50Ti_SG, (d) Ni/80Ce-20Ti_SG, and (e) Ni/CeO2_SG. The corresponding TEM images are shown as inserts. Each size distribution was obtained from 200 nickel deposit counts.
Fig.4  Amount of H2 desorbed versus temperature for nickel catalysts supported on sol-gel-synthesized ceria-titania mixed-oxide supports of different compositions. H2 adsorption was conducted at room temperature for all samples.
Fig.5  Amount of CO2 desorbed with respect to temperature for nickel catalysts supported on sol-gel-synthesized ceria-titania mixed-oxide supports (black curves) with different compositions: (a) Ni/TiO2_SG, (b) Ni/20Ce-80Ti_SG, (c) Ni/50Ce-50Ti_SG, (d) Ni/80Ce-20Ti_SG, and (e) Ni/CeO2_SG. The profiles of the respective neat supports are shown in red. CO2 adsorption was conducted at room temperature for all samples.
Catalyst Surface
Ce speciesa
Distribution of surface Ni species
Ni0 Ni2+ Ni3+
Ni/TiO2_SG 18% 44% 38%
Ni/20Ce-80Ti_SG 2.8% (4%) 25% 46% 29%
Ni/50Ce-50Ti_SG 6.2% (10%) 23% 46% 31%
Ni/80Ce-20Ti_SG 17.9% (16%) 12% 55% 33%
Ni/CeO2_SG 20.0% 9% 54% 37%
Tab.1  Surface percentage of Ce species and atomic distribution of Ni0, Ni2+, and Ni3+ species based on their corresponding peaks at 852.6 eV, 854.6 eV, and 856.1 eV, respectively.
Fig.6  XPS Ni2p spectra (black curves) of: (a) Ni/TiO2_SG, (b) Ni/20Ce-80Ti_SG, (c) Ni/50Ce-50Ti_SG, (d) Ni/80Ce-20Ti_SG, and (e) Ni/CeO2_SG. The deconvolution of each spectrum is shown by the red curves.
Fig.7  Ce3d spectra (black curves) of (a) Ni/50Ce-50Ti_SG, (b) Ni/80Ce-20Ti_SG, and (c) Ni/CeO2_SG. The deconvolution of each spectrum is shown by the red curves. The Ce3d spectrum of Ni/20Ce-80Ti_SG is not shown due to the low surface Ce content, which led to poor peak resolution. The u′/v′ doublets denote Ce3+ states, the u‴/v‴ doublets denote Ce4+ states, and the u0/v0 doublets signify the presence of oxygen vacancies.
Fig.8  Amount of CH4 produced over time by nickel catalysts supported on sol-gel-synthesized ceria-titania mixed-oxide supports with different compositions. Approximately 15 kPa of CO2 (about 3 mmol) and 60 kPa of H2 (about 12 mmol) were initially fed into the reactor system, and the catalyst bed (containing 0.1 g reduced catalyst) was illuminated with a 300 W xenon lamp.
Catalyst CH4 production rate (mmol·(gcat·h)−1)
Ni/TiO2_SG 0.1
Ni/20Ce-80Ti_SG 0.5
Ni/50Ce-50Ti_SG 10.6
Ni/80Ce-20Ti_SG 17.0
Ni/CeO2_SG 0.7
Tab.2  Methane production rates by supported nickel catalysts.
1 Kale MJ, Avanesian T, Xin H, Yan J, Christopher P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett 2014;14(9):5405–12
2 Zhang X, Chen Y, Liu R, Tsai DP. Plasmonic photocatalysis. Rep Prog Phys 2013;76(4):046401
3 Lou Z, Wang Z, Huang B, Dai Y. Synthesis and activity of plasmonic photocatalysts. ChemCatChem 2014;6(9):2456–76
4 Cheng H, Fuku K, Kuwahara Y, Mori K, Yamashita H. Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. J Mater Chem A 2015;3(10):5244–58
5 Jiang R, Li B, Fang C, Wang J. Metal/semiconductor hybrid nanostructures for plasmon—Enhanced applications. Adv Mater 2014;26(31):5274–309
6 Wang C, Ranasingha O, Natesakhawat S, Ohodnicki PR, Andio M, Lewis JP, et al.Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 2013;5(15):6968–74
7 Meng X, Wang T, Liu L, Ouyang S, Li P, Hu H, et al.Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: An alternative approach for solar fuel production. Angew Chem 2014;126(43):11662–6.German
8 Trovarelli A, Deleitenburg C, Dolcetti G, Lorca J. CO2 methanation under transient and steady-state conditions over Rh/CeO2 and CeO2-promoted Rh/SiO2: The role of surface and bulk ceria. J Catal 1995;151(1):111–24
9 Sakurai H, Haruta M. Carbon dioxide and carbon monoxide hydrogenation over gold supported on titanium, iron, and zinc oxides. Appl Catal A 1995;127(1–2):93–105
10 Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 2011;40(7):3703–27
11 Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, et al.Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014;345(6196):546–50
12 Yang X, Kattel S, Senanayake SD, Boscoboinik JA, Nie X, Graciani J, et al.Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface. J Am Chem Soc 2015;137(32):10104–7
13 Park JB, Graciani J, Evans J, Stacchiola D, Ma S, Liu P, et al.High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proc Natl Acad Sci USA 2009;106(13):4975–80
14 Park JB, Graciani J, Evans J, Stacchiola D, Senanayake SD, Barrio L, et al.Gold, copper, and platinum nanoparticles dispersed on CeOx/TiO2(110) surfaces: High water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. J Am Chem Soc 2010;132(1):356–63
15 Graciani J, Plata JJ, Sanz JF, Liu P, Rodriguez JA. A theoretical insight into the catalytic effect of a mixed-metal oxide at the nanometer level: The case of the highly active metal/CeOx/TiO2(110) catalysts. J Chem Phys 2010;132(10):104703
16 Farmer JA, Campbell CT. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 2010;329(5994):933–6
17 Cargnello M, Doan-Nguyen VV, Gordon TR, Diaz RE, Stach EA, Gorte RJ, et al.Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013;341(6147):771–3
18 Kho ET, Lovell E, Wong RJ, Scott J, Amal R. Manipulating ceria-titania binary oxide features and their impact as nickel catalyst supports for low temperature steam reforming of methane. Appl Catal A 2017;530:111–24
19 Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 1995;99(45):16646–54
20 Chen HI, Chang HY. Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceram Int 2005;31(6):795–802
21 Rahman MM, Im SH, Lee JJ. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles. Nanoscale 2016;8(11):5884–91
22 Bereketidou O, Goula M. Biogas reforming for syngas production over nickel supported on ceria-alumina catalysts. Catal Today 2012;195(1):93–100
23 Wootsch A, Descorme C, Duprez D. Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceria-zirconia and alumina-supported Pt catalysts. J Catal 2004;225(2):259–66
24 Li Y, Wang X, Xie C, Song C. Influence of ceria and nickel addition to alumina-supported Rh catalyst for propane steam reforming at low temperatures. Appl Catal A 2009;357(2):213–22
25 De Rogatis L, Montini T, Casula MF, Fornasiero P. Design of Rh@Ce0.2Zr0.8O2-Al2O3 nanocomposite for ethanol steam reforming. J Alloys Compd 2008;451(1–2):516–20
26 Cuauhtémoc I, Del Angel G, Torres G, Bertin V. Catalytic wet air oxidation of gasoline oxygenates using Rh/γ-Al2O3 and Rh/γ-Al2O3-CeO2 catalysts. Catal Today 2008;(133–5):588–93.
27 Amjad UES, Vita A, Galletti C, Pino L, Specchia S. Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts. Ind Eng Chem Res 2013;52(44):15428–36
28 Vita A, Cristiano G, Italiano C, Pino L, Specchia S. Syngas production by methane oxy-steam reforming on Me/CeO2 (Me= Rh, Pt, Ni) catalyst lined on cordierite monoliths. Appl Catal B 2015;162:551–63
29 Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 2006;110(14):7238–48
30 Boudjahem AG, Monteverdi S, Mercy M, Bettahar MM. Nanonickel particles supported on silica. Morphology effects on their surface and hydrogenating properties. Catal Lett 2004;97(3):177–83
31 Boudjahem A, Monteverdi S, Mercy M, Bettahar MM. Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine. J Catal 2004;221(2):325–34
32 Cesteros Y, Salagre P, Medina F, Sueiras J. Synthesis and characterization of several Ni/NiAl2O4 catalysts active for the 1,2,4-trichlorobenzene hydrodechlorination. Appl Catal B 2000;25(4):213–27
33 Bal R, Tope BB, Das TK, Hegde SG, Sivasanker S. Alkali-loaded silica, a solid base: Investigation by FTIR spectroscopy of adsorbed CO2 and its catalytic activity. J Catal 2001;204(2):358–63
34 Wang SG, Cao DB, Li YW, Wang J, Jiao H. Chemisorption of CO2 on nickel surfaces. J Phys Chem B 2005;109(40):18956–63
35 Falconer JL, Za?li AE. Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. J Catal 1980;62(2):280–5
36 Edmonds T, Pitkethly R. The adsorption of carbon monoxide and carbon dioxide at the (111) face of nickel observed by leed. Surf Sci 1969;15(1):137–63
37 Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS. New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 2006;600(9):1771–9
38 Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques. J Phys Chem B 2003;107(22):5162–7
39 Sinha AK, Suzuki K. Preparation and characterization of novel mesoporous ceria-titania. J Phys Chem B 2005;109(5):1708–14
40 Rynkowski J, Farbotko J, Touroude R, Hilaire L. Redox behaviour of ceria-titania mixed oxides. Appl Catal A 2000;203(2):335–48
41 Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 2013;52(29):7372–408
42 Navalón S, Dhakshinamoorthy A, Álvaro M, Garcia H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013;6(4):562–77
43 Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem 2012;124(32):8132–5. German
44 Lo CC, Hung CH, Yuan CS, Wu JF. Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 2007;91(19):1765–74
45 Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int J Hydrogen Energ 2012;37(7):5527–31
[1] Supplementary Information Download
No related articles found!
Full text



国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社