Please wait a minute...
投稿  |   English  | 
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (5) : 753-759
Research |
Steven J. Morrison1,Judith McBride1,Alan W. Gordon2,Alastair R. G. Wylie2,闫天海1()
1. Agri-Food and Biosciences Institute, Hillsborough, County Down BT26 6DR, UK
2. Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK
全文: PDF(722 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
摘要 动物和日粮因素对牛肠道甲烷排放量影响的相关研究已经很普遍,但是关于放牧青年奶牛的甲烷排放量的可参考数据较少。本研究评估了荷斯坦奶牛在多年生黑麦草草地放牧时的生理状态对甲烷排放量的影响,分别进行了以下两个试验:试验1从2011年5月开始,为期11个星期,试验2从2011年8月开始,为期10个星期。在每个试验中,将荷斯坦奶牛分成三个处理组(每组12头),分别由小牛犊、一岁的母牛犊和妊娠母牛组成(平均年龄分别为8.5、14.5和20.5月龄)。在每个试验的最后一个星期利用六氟化硫示踪技术预估每头牛的甲烷排放量。干物质摄入量由代谢能需要量除以牧草中的代谢能含量计算而得。正如预期一样,活体重随年龄的增加而增加(P < 0.001),然而试验1中三个分组的体增重没有差异,试验2中的体增重随着年龄增加有不同程度的减少(P < 0.001)。在试验1中,妊娠母牛高于小牛犊的甲烷排放量(P < 0.001),而一岁母牛犊的甲烷排放量最高(g•d-1)。当用单位活体重、干物质摄入量和总能摄入量表示甲烷排放量时,一岁母牛犊比小牛犊和妊娠母牛的排放速率更高(P < 0.001)。在试验2中,甲烷排放量(g•d-1)随着年龄增加呈线性上升(P < 0.001),但是这种差异在一岁母牛犊和妊娠母牛中并不显著。妊娠母牛的甲烷/活体重的比值低于另外两组(P < 0.001),小牛犊的总能摄入量中甲烷能量输出的比值低于一岁母牛犊和妊娠母牛(P < 0.05)。根据所有数据建立甲烷排放量的预测方程。所有关系均为显著(P < 0.001),R²值的分布范围为0.630~0.682。这些模型表明:每增加1 kg活体重,甲烷排放量增加0.252 g•d-1;每增加1 kg•d-1干物质摄入量,甲烷排放量增加14.9 g•d-1;每增加1 MJ•d-1总能摄入量,甲烷能量输出增加0.046 MJ•d-1。当实际甲烷排放量不可测时,这些结果为我们提供了预估放牧母牛甲烷排放量的另一种方法。
关键词 甲烷排放量放牧奶牛预测六氟化硫示踪技术    

Although the effect of animal and diet factors on enteric methane (CH4) emissions from confined cattle has been extensively examined, less data is available regarding CH4 emissions from grazing young cattle. A study was undertaken to evaluate the effect of the physiological state of Holstein-Friesian heifers on their enteric CH4 emissions while grazing a perennial ryegrass sward. Two experiments were conducted: Experiment 1 ran from May 2011 for 11 weeks and Experiment 2 ran from August 2011 for 10 weeks. In each experiment, Holstein-Friesian heifers were divided into three treatment groups (12 animals/group) consisting of calves, yearling heifers, and in-calf heifers (average ages: 8.5, 14.5, and 20.5 months, respectively). Methane emissions were estimated for each animal in the final week of each experiment using the sulfur hexafluoride tracer technique. Dry matter (DM) intake was estimated using the calculated metabolizable energy (ME) requirement divided by the ME concentration in the grazed grass. As expected, live weight increased with increasing animal age (P<0.001); however, there was no difference in live weight gain among the three groups in Experiment 1, although in Experiment 2, this variable decreased with increasing animal age (P<0.001). In Experiment 1, yearling heifers had the highest CH4 emissions (g·d−1) and in-calf heifers produced more than calves (P<0.001). When expressed as CH4 emissions per unit of live weight, DM intake, and gross energy (GE) intake, yearling heifers had higher emission rates than calves and in-calf heifers (P<0.001). However, the effects on CH4 emissions were different in Experiment 2, in which CH4 emissions (g·d−1) increased linearly with increasing animal age (P<0.001), although the difference between yearling and in-calf heifers was not significant. The CH4/live weight ratio was lower in in-calf heifers than in the other two groups (P<0.001), while CH4 energy output as a proportion of GE intake was lower in calves than in yearling and in-calf heifers (P<0.05). All data were then pooled and used to develop prediction equations for CH4 emissions. All relationships are significant (P<0.001), with R2 values ranging from 0.630 to 0.682. These models indicate that CH4 emissions could be increased by 0.252 g·d−1 with an increase of 1 kg live weight or by 14.9 g·d−1 with an increase of 1 kg·d−1 of DM intake; or, the CH4 energy output could be increased by 0.046 MJ·d−1 with an increase of 1 MJ·d−1 of GE intake. These results provide an alternative approach for estimating CH4 emissions from grazing dairy heifers when actual CH4 emission data are not available.

Keywords Methane emission      Grazing dairy heifer      Prediction      Sulfur hexafluoride tracer technique     
最新录用日期:    在线预览日期:    发布日期: 2017-11-08
Steven J. Morrison
Judith McBride
Alan W. Gordon
Alastair R. G. Wylie
Tianhai Yan
Steven J. Morrison,Judith McBride,Alan W. Gordon, et al. Methane Emissions from Grazing Holstein-Friesian Heifers at Different Ages Estimated Using the Sulfur Hexafluoride Tracer Technique[J]. Engineering, 2017, 3(5): 753-759.
网址:     OR
Mean SD Minimum Maximum
Experiment 1
Dry matter (g·kg−1) 161 31.8 110 219
Ash (g·kg−1 DM) 93 6.4 84 102
Gross energy (MJ·kg−1 DM) 18.5 0.30 18.1 19.0
Crude protein (g·kg−1 DM) 179 27.0 160 235
Acid detergent fiber (g·kg−1 DM) 233 21.8 199 266
Neutral detergent fiber (g·kg−1 DM) 490 38.8 417 544
Lipid (g·kg−1 DM) 42 6.8 35 52
Water-soluble carbohydrates (g·kg−1 DM) 169 26.2 139 213
Experiment 2
Dry matter (g·kg−1) 145 22.0 112 215
Ash (g·kg−1 DM) 108 19.7 81 137
Gross energy (MJ·kg−1 DM) 18.5 0.30 18.0 19.0
Crude protein (g·kg−1 DM) 207 36.7 151 249
Acid detergent fiber (g·kg−1 DM) 247 8.0 237 261
Neutral detergent fiber (g·kg−1 DM) 492 26.9 454 549
Lipid (g·kg−1 DM) 35 4.2 31 40
Water-soluble carbohydrates (g·kg−1 DM) 117 34.2 60 162
Tab.1  Chemical composition of fresh grass.
Heifer age group SE P
(5–10 months)
(12–17 months)
(18–23 months)
Experiment 1
Live weight (kg) 217a 404b 514c 12.61 < 0.001
Live weight gain (kg·d−1) 1.05 1.11 0.99 0.064 0.445
DM intake (kg·d−1) 5.37a 8.79b 10.21c 0.394 < 0.001
GE intake (MJ·d−1) 101a 161b 186c 7.3 < 0.001
ME intake (MJ·d−1) 62a 99b 114c 4.5 < 0.001
Experiment 2
Live weight (kg) 246a 411b 520c 17.12 < 0.001
Live weight gain (kg·d−1) 0.82c 0.59b 0.38a 0.053 < 0.001
DM intake (kg·d−1) 5.34a 6.95b 7.91b 0.370 < 0.001
GE intake (MJ·d−1) 100a 127b 145b 6.8 < 0.001
ME intake (MJ·d−1) 60a 77b 88b 4.1 < 0.001
Tab.2  Effects of heifer age groups on live weight and feed intake in Experiments 1 and 2.
Heifer age groups SE P
(5–10 months)
(12–17 months)
(18–23 months)
Experiment 1
CH4 emissions (g·d−1) 98a 189c 172b 5.6 < 0.001
CH4/live weight (g·kg−0.75) 1.71a 2.10b 1.60a 0.054 < 0.001
CH4/DM intake (g·kg−1) 18.5a 21.7b 17.1a 0.74 < 0.001
CH4-E/GE intake (MJ·MJ−1) 0.055a 0.066b 0.052a 0.0022 < 0.001
CH4-E/ME intake (MJ·MJ−1) 0.089a 0.107b 0.084a 0.0037 <0.001
Experiment 2
CH4 emissions (g·d−1) 106a 155b 169b 5.3 < 0.001
CH4/live weight (g·kg−0.75) 1.72b 1.72b 1.56a 0.029 < 0.001
CH4/DM intake (g·kg−1) 19.9 22.8 21.8 0.81 0.052
CH4-E/GE intake (MJ·MJ−1) 0.059a 0.069b 0.066b 0.0025 0.016
CH4-E/ME intake (MJ·MJ−1) 0.098a 0.114b 0.109ab 0.0041 0.025
Tab.3  Effect of heifer age groups on enteric methane emissions in Experiments 1 and 2.
Equationsa R2 P Eq. No.
Using data from calves, yearling heifers, and in-calf heifers in both Experiments 1 and 2 (n = 72)
CH4 = 0.252 (0.020) LW+ 50.92 (9.96) 0.682 <0.001 5
CH4 = 14.94 (1.28) DM intake+ 36.77 (11.08) 0.651 <0.001 6
CH4-E= 0.046 (0.004) GE intake+ 1.93 (0.63) 0.639 <0.001 7
CH4-E= 0.075 (0.007) ME intake+ 1.93 (0.66) 0.630 <0.001 8
Using data from calves only in both Experiments 1 and 2 (n = 24)
CH4 = 0.340 (0.023) LW+ 23.23 (5.37) 0.910 <0.001 9
CH4 = 13.80 (1.31) DM intake+ 27.89 (8.31) 0.780 <0.001 10
CH4-E= 0.041 (0.004) GE intake+ 1.54 (0.46) 0.783 <0.001 11
CH4-E= 0.066 (0.006) ME intake+ 1.57 (0.49) 0.743 <0.001 12
Using data from yearling heifers only in both Experiments 1 and 2 (n = 24)
CH4 = 0.244 (0.054) LW+ 72.61 (28.068) 0.253 <0.001 13
CH4 = 10.40 (2.467) DM intake+ 89.51 (21.028) 0.579 <0.001 14
CH4-E= 0.032 (0.007) GE intake+ 4.94 (1.157) 0.582 <0.001 15
CH4-E= 0.052 (0.012) ME intake+ 4.92 (1.15) 0.585 <0.001 16
Tab.4  Prediction equations for methane emissions of Holstein-Friesian heifers.
Fig.1  The relationship between gross energy intake and CH4 energy output for all three groups of Holstein-Friesian heifers.
Fig.2  The relationship between live weight and CH4 emissions for all three groups of Holstein-Friesian heifers.
1 European Environment Agency.EEA greenhouse gas—Data viewer [Internet]. Copenhagen: European Environment Agency. [updated 2016 Dec 6; cited 2017 Jan 20]. Available from:
2 Food and Agriculture Organization.Greenhouse gas emissions from the dairy sector—A life cycle assessment [Internet]. Copenhagen: Food and Agriculture Organization. 2010 [cited 2017 Jan 20]. Available from:
3 Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. Prediction of methane production from dairy and beef cattle. J Dairy Sci 2007;90(7):3456–66
4 Yan T, Mayne CS, Gordon FG, Porter MG, Agnew RE, Patterson DC, et al.Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J Dairy Sci 2010;93(6):2630–8
5 Jiao HP, Yan T, Wills DA, Carson AF, McDowell DA. Development of prediction models for quantification of total methane emission from enteric fermentation of young Holstein cattle at various ages. Agric Ecosyst Environ 2014;183:160–6
6 Johnson K, Huyler M, Westberg H, Lamb B, Zimmerman P. Measurement of methane emissions from ruminant livestock using a SF6 tracer technique. Environ Sci Technol 1994;28:359–62
7 Grainger C, Clarke T, McGinn SM, Auldist MJ, Beauchemin KA, Hannah MC, et al.Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. J Dairy Sci 2007;90(6):2755–66
8 Muñoz C, Yan T, Wills DA, Murray S, Gordon AW. Comparison of the sulfur hexafluoride tracer and respiration chamber techniques for estimating methane emissions and correction for rectum methane output from dairy cows. J Dairy Sci 2012;95(6):3139–48
9 Dale AJ, Mayne CS, Laidlaw AS, Ferris CP. Effect of altering the grazing interval on growth and utilization of grass herbage and performance of dairy cows under rotational grazing. Grass Forage Sci 2008;63(2):257–69
10 Park RS, Agnew RE, Gordon FJ, Steen RWJ. The use of near infrared reflectance spectroscopy (NIRS) on undried samples of grass silage to predict chemical composition and digestibility parameters. Anim Feed Sci Technol 1998;72(1–2):155–67
11 Porter MG. Comparison of sample preparation methods for the determination of the gross energy concentration of fresh silage. Anim Feed Sci Technol 1992;37(3–4):207–8
12 Cushnahan A, Gordon FG. The effects of grass preservation on intake, apparent digestibility and rumen degradation characteristics. Anim Sci J 1995;60(3):429–38
13 Agricultural and Food Research Council.Energy and protein requirements of ruminants. Report. Wallingford: CAB International; 1993.
14 Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, editors. IPCC guidelines for national greenhouse gas inventories. Copenhagen: Intergovernmental Panel on Climate Change (IPCC); 2006.
15 Baggott SL, Cardenas L, Downes M, Garnett E, Jackson J, Li Y, et al.Greenhouse gas inventories for England, Scotland, Wales and Northern Ireland: 1990–2004. Report. Didcot: AEA Technology plc.; 2006 Nov. Report No.: AEAT/ENV/R/2318.
16 Crompton LA, Mills JA, Kliam KE, Reynolds CK. Effects of feeding milled rapeseed on methane emission and milk fatty acid composition in lactating dairy cows. Adv Anim Biosci 2011;2:75.
17 Yan T, Agnew RE, Gordon FJ, Porter MG. Prediction of methane energy output in dairy and beef cattle offered grass silage-based diets. Livest Prod Sci 2000;64(2–3):253–63
18 Jiao HP, Dale AJ, Carson AF, Murray S, Gordon AW, Ferris CP. Effect of concentrate feed level on methane emissions from grazing dairy cows. J Dairy Sci 2014;97(11):7043–53
19 Cavanagh A, McNaughton L, Clark H, Greaves C, Gowan JM, Pinares-Patino C, et al.Methane emissions from grazing Jersey × Friesian dairy cows in mid lactation. Aust J Exp Agric 2008;48(2):230–3
20 Boland TM, Quinlan C, Pierce KM, Lynch MB, Kenny DA, Kelly AK, et al.The effect of pasture pregrazing herbage mass on methane emissions, ruminal fermentation, and average daily gain of grazing beef heifers. J Anim Sci 2013;91(8):3867–74
21 Deighton MH, Williams SRO, Lassey KR, Hannah MC, Boland TM, Eckard RJ, et al.Temperature, but not submersion or orientation, influences the rate of sulphur hexafluoride release from permeation tubes used for estimation of ruminant methane emissions. Anim Feed Sci Technol 2014;194:71–80
22 Williams SRO, Moate PJ, Hannah MC, Ribaux BE, Wales WJ, Eckard RJ. Background matters with the SF6 tracer method for estimating enteric methane emissions from dairy cows: A critical evaluation of the SF6 procedure. Anim Feed Sci Technol 2011;170(3–4):265–76
23 Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995;73(8):2483–92
24 Bannink A, van Schijndel MW, Dijkstra J. A model of enteric fermentation in dairy cows to estimate methane emission for the Dutch National Inventory Report using the IPCC Tier 3 approach. Anim Feed Sci Technol 2011;166– 7:603–18
25 Boadi DA, Wittenberg KM, Kennedy AD. Validation of the sulphur hexafluoride (SF6) tracer gas technique for measurement of methane and carbon dioxide production by cattle. Can J Anim Sci 2002;82(2):125–31
26 Moe PW, Tyrell HF. Methane production in dairy cows. J Dairy Sci 1979;62(10):1583–6
27 Blaxter KL, Clapperton JL. Prediction of the amount of methane produced by ruminants. Br J Nutr 1965;19(4):511–22
28 McCaughey WP, Wittenberg K, Corrigan D. Methane production by steers on pasture. Can J Anim Sci 1997;77(3):519–24
29 Hart KJ, Martin PG, Foley PA, Kenny DA, Boland M. Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle. J Anim Sci 2009;87(10):3342–50
30 Johnson DE, Ward GM, Ramsey JJ. Livestock methane: Current emissions and mitigation potential. In: Kornegay ET, editor Nutrient management of food animals to enhance and protect the environment. New York: CRC Press Inc.; 1996. p. 219–33.
31 Yan T, Mayne CS, Porter MG. Effects of dietary and animal factors on methane production in dairy cows offered grass silage-based diets. In: Proceedings of the 2nd International Conference on Greenhouse Gases and Animimal Agriculture; 2005 Sep 20–24; Zurich, Switzerland. Amsterdam: Elsevier; 2006. p. 131–4
32 Mills JA, Kebreab E, Yates CM, Crompton LA, Cammell SB, Dhanoa MS, et al.Alternative approaches to predicting methane emissions from dairy cows. J Anim Sci 2003;81(12):3141–50
33 Zhao YG, O’Connell NE, Yan T. Prediction of enteric methane emissions from sheep offered fresh perennial ryegrass (Lolium perenne) using data measured in indirect open-circuit respiration chambers. J Anim Sci 2016;94(6):2425–35
34 Carson AF, Dawson LER, McCoy MA, Kilpatrick DJ, Gordon FJ. Effects of rearing regime on body size, reproductive performance and milk production during the first lactation in high genetic merit dairy herd replacements. Anim Sci 2002;74(3):553–65
[1] Yubao Chen. Integrated and Intelligent Manufacturing: Perspectives and Enablers[J]. Engineering, 2017, 3(5): 588-595.
[2] He Zhuang, Liping Feng, Chao Wen, Qiyuan Peng, Qizhi Tang. High-Speed Railway Train Timetable Conflict Prediction Based on Fuzzy Temporal Knowledge Reasoning[J]. Engineering, 2016, 2(3): 366-373.
Full text



国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社