Please wait a minute...
投稿  |   English  | 
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 365-378
Research |
肖慕,王松灿,Thaweesak Supphasin,罗彬,王连洲()
Nanomaterials Center, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
全文: PDF(6167 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息


关键词 钽基光催化剂窄带隙分解水    

Photocatalytic water splitting, which directly converts solar energy into hydrogen, is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration, and encouraging progress has been achieved over the past years. However, the solar-to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water-splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.

Keywords Tantalum-based photocatalyst      Narrow bandgap      Water splitting      Hydrogen     
通讯作者: 王连洲     E-mail:
最新录用日期:    发布日期: 2017-06-30
Mu Xiao
Songcan Wang
Supphasin Thaweesak
Bin Luo
Lianzhou Wang
Mu Xiao,Songcan Wang,Supphasin Thaweesak, et al. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365-378.
网址:     OR
Fig.1  Main scheme of photocatalytic water splitting. CB: conduction band; VB: valence band.
Fig.2  Scheme of water splitting using semiconductors.
Compound Crystal structure Absorption edge (nm) Bandgap (eV)
Ta3N5 Anosovite 600 2.1
TaON Baddelyite 510 2.4
LaTaON2 Perovskite 640 1.9
CaTaO2N Perovskite 510 2.4
SrTaO2N Perovskite 570 2.2
BaTaO2N Perovskite 660 1.9
Tab.1  Representative tantalum (oxy)nitride-based photocatalysts [49].
Fig.3  Schematic band structures of Ta2O5, TaON, and Ta3N5 [54]. (Copyright 2003, American Chemical Society)
Fig.4  Bandgap diagrams of tantalum-based oxynitride perovskite [55]. EF: Femi lever; EVAC: vacuum lever. (Copyright 2013, American Chemical Society)
Fig.5  UV-Vis light absorption spectra of Ta3N5 prepared at 850 °C, 900 °C, 950 °C, and 1000 °C in NH3 gas collected in different mode: (a) transmission mode and (b) integrating sphere. Pictures inset in (b) show the gray tint in the sample treated at 950 °C and 1000 °C [62]. (Copyright 2014, American Chemical Society)
Fig.6  UV-Vis light diffuse reflectance spectra of Ta3N5. (a) Pristine Ta3N5; (b–e) samples treated at 823 K for 5 h with (b) 10 MPa of N2, (c) 10 MPa of NH3, (d) 50 MPa of NH3, and (e) 100 MPa of NH3 [64]. (Copyright 2012, Elsevier)
Fig.7  Scanning electron microscope (SEM) images of Ta3N5 prepared by various flux-assisted nitridation methods. (a) Ta2O5-NaCl (850 °C for 10 h); (b) Ta3N5-NaCl (850 °C for 10 h); (c) TaCl5-NaCl (800 °C for 10 h); and (d) TaCl5-Zn (800 °C for 10 h) [69]. (Copyright 2011, American Chemical Society)
Fig.8  (a) Time courses for photocatalytic H2 production on Ta3N5 variants separately replaced with different amounts of Mg, Zr, or Mg+Zr: (i) undoped; (ii) 25 at% Mg; (iii) 40 at% Mg; (iv) 25 at% Zr; (v) 40 at% Zr; (vi) 25 at% Mg+Zr; (vii) 40 at% Mg+Zr. (b) Band structure diagram of Ta3N5 and Ta3N5:Mg+ Zr [81]. Efb: flat band energy. (Copyright 2015, American Chemical Society)
Fig.9  (a) (F(R))1/2 versus the energy curve of LaMgxTa1–xO1+3xN2–3x derived from UV-Vis light diffuse reflectance spectra. (b) Band levels of LaMgxTa1–xO1+3xN2–3x (x = 0 and 0.33) obtained by PESA and theoretical calculations (CAL) [82]. (Copyright 2016, The Royal Society of Chemistry)
Fig.10  (a) Transmission electron microscope (TEM) image of mesoporous Ta3N5 [84] (Copyright 2010, American Chemical Society); (b) SEM image of Ta3N5 nanoparticles prepared using the reverse homogeneous precipitation (RHP) method [85] (Copyright 2009, Elsevier); (c) TEM image of Ta3N5 particles prepared by adopting mesoporous C3N4 as the template [86] (Copyright 2010, The Royal Society of Chemistry); (d) SEM image of macroporous Ta3N5 [87] (Copyright 2012, Wiley-VCH).
Fig.11  SEM images of: (a–d) u-Ta2O5, (e) γ/β-TaON(u), and (f) u-Ta3N5. (g) Scheme of the formation of hollow urchin-like u-Ta2O5 hierarchical nanostructures and the subsequent thermal nitridation, successively forming γ-TaON, β-TaON, and u-Ta3N5 [90]. (Copyright 2013, The Royal Society of Chemistry)
Fig.12  (a, c) SEM and (b, d) TEM images (top right insets: electron diffraction) of (a, b) Ta3N5 nanoplates and (c, d) Ta3N5 octahedra. (e) Diffuse reflectance spectra and (f) time-dependent H2 evolution reaction of different Ta3N5 samples [92]. (Copyright 2016, The Royal Society of Chemistry)
Fig.13  (a) UV-Vis diffuse reflectance spectra (inset: Tauc plot) and (b) band position of CaTaO2N as determined by calculation. Time courses of gas evolution during water splitting on titanium-oxyhydroxide-deposited RhCrOy/CaTaO2N under (c) UV+ Visible light (λ≥300 nm) and (d) visible light (λ≥420 nm) [51]. (Copyright 2015, The Royal Society of Chemistry)
Fig.14  Field emission scanning electron microscope (FESEM) images of (a) Pt/Ta3N5 and (b) Pt/MgO(in)-Ta3N5 [97] (Copyright 2016, Elsevier); (c) time course of visible-light H2 evolution with 0.5 wt% Pt/Ba(0.3)-Ta3N5; (d) relative band positions of the Ta3N5/BaTaO2N heterostructure [98] (Copyright 2017, The Royal Society of Chemistry).
Fig.15  (a) Scheme illustration of two separated co-catalysts used to decorate Ta3N5 hollow spheres to create an effective photocatalyst for water splitting. (b,c) SEM images of (b) Ta3N5/Pt/SiO2 spheres and (c) Ta3N5/Pt hollow spheres. The scale bar is 500 nm. (d) Time course of H2 evolution on Ta3N5 photocatalysts with and without spatially separated co-catalysts [40]. TPS: Ta3N5/Pt/SiO2; TS: Ta3N5/SiO2. (Copyright 2013, Wiley-VCH)
Fig.16  (a) Scheme of the mechanism of overall water splitting on an IrO2/Cr2O3/RuOx/ZrO2/TaON photocatalyst. (b) Time course of gas evolution using IrO2/Cr2O3/RuOx/TaON under visible light (λ>400 nm) [18]. (Copyright 2013, Wiley-VCH)
Fig.17  (a) A TEM image of Au nanoparticles; (b) high-angle annular dark-field scanning transmission electron microscope (STEM) image of nano Au/Ta3N5; (c) the UV-Vis diffuse reflectance spectra of nano Au/Ta3N5; (d) the time course of H2 generation for the nano Au/Ta3N5 composites [119]. (Copyright 2014, The Royal Society of Chemistry)
Fig.18  Relative bandgap positions and charge transfer mechanism (Z-scheme) in Bi2O3 and Ta3N5 under visible-light irradiation [121]. (Copyright 2015, The Royal Society of Chemistry)
Fig.19  (a) Scheme of the Z-scheme overall water splitting on a RuO2/TaON and Pt/TaON mixture with an I O 3 /I redox mediator [ 122] (Copyright 2008, The CSJ Journals); (b) Scheme of two-step water splitting on a Pt/ZrO2/TaON and Ir/R-TiO2/Ta3N5 mixture with an I O 3 /I redox mediator [ 123] (Copyright 2010, American Chemical Society).
Photocatalysts Morphology Co-catalyst
(Amount, wt%)
Light source Reaction solution Activity
H2 O2
Ta3N5 Microparticles Pt (3.0) 300 W Xe (λ>420 nm) Methanol 9.0 NA [43]
Ta3N5 Nanoparticles Pt (0.5) 300 W Xe (λ>420 nm) Methanol 10.5 NA [85]
Ta3N5 Mesoporous Pt (3.0) 300 W Xe (λ>420 nm) Methanol 17.0 NA [84]
Ta3N5 Microparticles Pt (0.5) 300 W Xe (λ>420 nm) Methanol 110.0 NA [65]
Ta3N5 Nanoparticles Pt (0.5) 450 W Hg (λ>400 nm) Methanol 136.0 NA [86]
Ta3N5 Ordered porous Pt (3.0) 300 W Xe (λ>420 nm) Methanol 18.0 NA [91]
Ta3N5 Microparticles Pt (0.5) 70 W halide (λ>380 nm) Methanol 72.0 NA [64]
Ta3N5 Hollow structure Pt (0.1) 300 W Xe (λ>420 nm) Methanol 425.0 NA [90]
Ta3N5 Hollow spheres Pt (1) IrO2 (0.025) 300 W Xe (λ>420 nm) Methanol 206.3 NA [40]
Ta3N5 Nanoplates Pt (3.0) 300 W Xe (λ>400 nm) Methanol 26.5 NA [92]
Ta3N5 Macroporous NA 300 W Xe Methanol 82.5 NA [87]
Mg-Ta3N5 Microparticles Pt (0.3) 300 W Xe (λ>420 nm) Methanol 70.4 NA [81]
Zr-Ta3N5 Microparticles Pt (0.3) 300 W Xe (λ>420 nm) Methanol 80.6 NA [81]
(Mg+ Zr)-Ta3N5 Microparticles Pt (0.3) 300 W Xe (λ>420 nm) Methanol 60.8 NA [81]
SiO2/Ta3N5 Core/shell Pt (3.0) 300 W Xe (λ>420 nm) Methanol 83.3 NA [118]
ZrO2/Ta3N5 Microparticles Pt (0.5) 300 W Xe (λ>420 nm) Methanol 27.4 NA [96]
MgO/Ta3N5 Microparticles Pt (2.0) 300 W Xe (λ>420 nm) Methanol 149.3 NA [97]
BaTaO2N/Ta3N5 Microparticles Pt (0.5) 300 W Xe (λ>420 nm) Methanol 201.3 NA [98]
Au/Ta3N5 Nanoparticles Pt (1.0) 300 W Xe (λ>420 nm) Methanol 150.0 NA [119]
ZrO2/TaON Nanoparticles IrO2/Cr2O3/RuOx (3.0) 450 W Hg (λ>400 nm) Water 15.0 6.70 [18]
LaMg1/3Ta2/3ON Nanoparticles RhCrOy (0.5) 300 W Xe (λ>420 nm) Water 5.0 2.50 [21]
CaTaO2N Nanoparticles RhCrOy 300 W Xe (λ>420 nm) Water 0.7 0.35 [51]
Tab.2  Tantalum (oxy)nitride-based photocatalysts for water splitting.
1 Dunn S. Hydrogen futures: Toward a sustainable energy system. Int J Hydrogen Energy 2002;27(3):235–64
2 Graetz J. New approaches to hydrogen storage. Chem Soc Rev 2009;38(1):73–82
3 Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today 2009;139(4):244–60
4 Conte M, Prosini PP, Passerini S. Overview of energy/hydrogen storage: State-of-the-art of the technologies and prospects for nanomaterials. Mater Sci Eng B 2004;108(1–2):2–8
5 Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ Sci 2015;8(3):731–59
6 Acar C, Dincer I, Naterer GF. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energy Res 2016;40(11):1449–73
7 Jafari T, Moharreri E, Amin A, Miao R, Song W, Suib S. Photocatalytic water splitting—The untamed dream: A review of recent advances. Molecules 2016;21(7):900
8 Chen S, Thind SS, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochem Commun 2016;63:10–7
9 Chen J, Zhao D, Diao Z, Wang M, Shen S. Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: A case study of (Co, Ni)Fe2O4 modification. Sci Bull 2016;61(4):292–301
10 Liu Y, Tian L, Tan X, Li X, Chen X. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci Bull 2017;62(6):431–41
11 Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009;38(1):253–78
12 Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Nano-photocatalytic materials: Possibilities and challenges. Adv Mater 2012;24(2):229–51
13 Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 2014;43(22):7520–35
14 Zhang P, Zhang J, Gong J. Tantalum-based semiconductors for solar water splitting. Chem Soc Rev 2014;43(13):4395–422
15 Zou Z, Ye J, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001;414(6864):625–7
16 Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, et al.Photocatalyst releasing hydrogen from water. Nature 2006;440(7082):295
17 Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, et al.Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 2007;111(2):1042–8
18 Maeda K, Lu D, Domen K. Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration. Chemistry 2013;19(16):4986–91
19 Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, et al.Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015;347(6225):970–4
20 Meng A, Zhang J, Xu D, Cheng B, Yu J. Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on (101) and (001) facets. Appl Catal B 2016;198:286–94
21 Pan C, Takata T, Nakabayashi M, Matsumoto T, Shibata N, Ikuhara Y, et al.A complex perovskite-type oxynitride: The first photocatalyst for water splitting operable at up to 600 nm. Angew Chem Int Ed 2015;54(10):2955–9
22 Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, et al.Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 2011;133(28):10878–84
23 Frame FA, Osterloh FE. CdSe-MoS2: A quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J Phys Chem C 2010;114(23):10628–33
24 Tsuji I, Kato H, Kudo A. Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst. Angew Chem Int Ed 2005;117(23):3631–4
25 Yoneyama H. Electrochemical aspects of light-induced heterogeneous reactions on semiconductors. Crit Rev Solid State Mater Sci 1993;18(1):69–111
26 Kazunari D, Kondo JN, Michikazu H, Tsuyoshi T. Photo- and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts. Bull Chem Soc Jpn 2000;73(6):1307–31
27 Kudo A. Development of photocatalyst materials for water splitting. Int J Hydrogen Energy 2006;31(2):197–202
28 Shangguan W. Hydrogen evolution from water splitting on nanocomposite photocatalysts. Sci Technol Adv Mater 2007;8(1–2):76–81
29 Kudo A. Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int J Hydrogen Energy 2007;32(14):2673–8
30 Maeda K, Domen K. New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 2007;111(22):7851–61
31 Osterloh FE. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 2013;42(6):2294–320
32 Cao S, Low J, Yu J, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 2015;27(13):2150–76
33 Zhang G, Liu G, Wang L, Irvine JTS. Inorganic perovskite photocatalysts for solar energy utilization. Chem Soc Rev 2016;45(21):5951–84
34 Xu Y, Kraft M, Xu R. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chem Soc Rev 2016;45(11):3039–52
35 Yuan L, Han C, Yang MQ, Xu YJ. Photocatalytic water splitting for solar hydrogen generation: Fundamentals and recent advancements. Int Rev Phys Chem 2016;35(1):1–36
36 Grätzel M. Photoelectrochemical cells. Nature 2001;414(6861):338–44
37 Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, et al.Solar water splitting cells. Chem Rev 2010;110(11):6446–73
38 Li Z, Luo W, Zhang M, Feng J, Zou Z. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 2013;6(2):347–70
39 Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD, et al.Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 2006;31(14):1999–2017
40 Wang D, Hisatomi T, Takata T, Pan C, Katayama M, Kubota J, et al.Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew Chem Int Ed 2013;52(43):11252–6
41 Nurlaela E, Ziani A, Takanabe K. Tantalum nitride for photocatalytic water splitting: Concept and applications. Mater Renew Sust Energy 2016;5(4):18
42 Moriya Y, Takata T, Domen K. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 2013;257(13–14):1957–69
43 Go H, Akio I, Tsuyoshi T, Kondo JN, Michikazu H, Kazunari D. Ta3N5 as a novel visible light-driven photocatalyst (λ<600 nm). Chem Lett 2002;31(7):736–7
44 Nurlaela E, Ould-Chikh S, Llorens I, Hazemann JL, Takanabe K. Establishing efficient cobalt-based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst. Chem Mater 2015;27(16):5685–94
45 Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew Chem Int Ed 2015;54(10):3047–51
46 Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, et al.Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 2002;106(29):6750–3
47 Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤500 nm). Chem Commun 2002;(16):1698–9
48 Hara M, Hitoki G, Takata T, Kondo JN, Kobayashi H, Domen K. TaON and Ta3N5 as new visible light driven photocatalysts. Catal Today 2003;78(1–4):555–60
49 Takata T, Pan C, Domen K. Design and development of oxynitride photocatalysts for overall water splitting under visible light irradiation. ChemElectroChem 2016;3(1):31–7
50 Matoba T, Maeda K, Domen K. Activation of BaTaO2N photocatalyst for enhanced non-sacrificial hydrogen evolution from water under visible light by forming a solid solution with BaZrO3. Chemistry 2011;17(52):14731–5
51 Xu J, Pan C, Takata T, Domen K. Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation. Chem Commun 2015;51(33):7191–4
52 Maeda K. (Oxy)nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting. Phys Chem Chem Phys 2013;15(26):10537–48
53 He Y, Thorne JE, Wu CH, Ma P, Du C, Dong Q, et al.What limits the performance of Ta3N5 for solar water splitting? Chem 2016;1(4):640–55
54 Chun WJ, Ishikawa A, Fujisawa H, Takata T, Kondo JN, Hara M, et al.Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J Phys Chem B 2003;107(8):1798–803
55 Balaz S, Porter SH, Woodward PM, Brillson LJ. Electronic structure of tantalum oxynitride perovskite photocatalysts. Chem Mater 2013;25(16):3337–43
56 Higashi M, Domen K, Abe R. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ Sci 2011;4(10):4138–47
57 Yokoyama D, Hashiguchi H, Maeda K, Minegishi T, Takata T, Abe R, et al.Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Films 2011;519(7):2087–92
58 Feng X, Latempa TJ, Basham JI, Mor GK, Varghese OK, Grimes CA. Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett 2010;10(3):948–52
59 Ritala M, Kalsi P, Riihelä D, Kukli K, Leskelä M, Jokinen J. Controlled growth of TaN, Ta3N5, and TaOxNy thin films by atomic layer deposition. Chem Mater 1999;11(7):1712–8
60 Fang Z, Aspinall HC, Odedra R, Potter RJ. Atomic layer deposition of TaN and Ta3N5 using pentakis(dimethylamino)tantalum and either ammonia or monomethylhydrazine. J Cryst Growth 2011;331(1):33–9
61 Zhen C, Wang L, Liu G, Lu GQ, Cheng HM. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Chem Commun 2013;49(29):3019–21
62 Pinaud BA, Vailionis A, Jaramillo TF. Controlling the structural and optical properties of Ta3N5 films through nitridation temperature and the nature of the Ta metal. Chem Mater 2014;26(4):1576–82
63 Park JC, Pee JH, Park HH. Effect of presynthesis of Ta precursor on the formation of Ta nitrides. J Mater Res 2010;25(5):835–41
64 Kishida K, Watanabe T. Improvement of photocatalytic activity of tantalum nitride by ammonothermal treatment at high pressure. J Solid State Chem 2012;191:15–8
65 Lee Y, Nukumizu K, Watanabe T, Takata T, Hara M, Yoshimura M, et al.Effect of 10 MPa ammonia treatment on the activity of visible light responsive Ta3N5 photocatalyst. Chem Lett 2006;35(4):352–3
66 Brauer G, Weidlein JR. Synthesis and properties of red tantalum nitride Ta3N5. Angew Chem 1965;77(5):218–9. German
67 Murakami N, Prieto Mahaney OO, Abe R, Torimoto T, Ohtani B. Double-beam photoacoustic spectroscopic studies on transient absorption of titanium (IV) oxide photocatalyst powders. J Phys Chem C 2007;111(32):11927–35
68 Abe R, Takami H, Murakami N, Ohtani B. Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Soc Chem 2008;130(25):7780–1
69 Takata T, Lu D, Domen K. Synthesis of structurally defined Ta3N5 particles by flux-assisted nitridation. Cryst Growth Des 2011;11(1):33–8
70 Xiao M, Li Y, Lu Y, Ye Z. Synthesis of ZrO2: Fe nanostructures with visible-light driven H2 evolution activity. J Mater Chem A 2015;3(6):2701–6
71 Li Y, Li F, Li X, Song H, Lou Z, Ye Z, et al.Ultrahigh efficient water oxidation under visible light: Using Fe dopants to integrate nanostructure and cocatalyst in LaTiO2N system. Nano Energy 2016;19:437–45
72 Shen S, Zhao L, Zhou Z, Guo L. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. J Phys Chem C 2008;112(41):16148–55
73 Hong J, Xia X, Wang Y, Xu R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem 2012;22(30):15006–12
74 Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 2010;132(34):11856–7
75 Li Y, Ma G, Peng S, Lu G, Li S. Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution. Appl Surf Sci 2008;254(21):6831–6
76 Kado Y, Hahn R, Lee CY, Schmuki P. Strongly enhanced photocurrent response for Na doped Ta3N5-nano porous structure. Electrochem Commun 2012;17:67–70
77 Feng J, Cao D, Wang Z, Luo W, Wang J, Li Z, et al.Ge-mediated modification in Ta3N5 photoelectrodes with enhanced charge transport for solar water splitting. Chemistry 2014;20(49):16384–90
78 Ma SSK, Hisatomi T, Maeda K, Moriya Y, Domen K. Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J Am Chem Soc 2012;134(49):19993–6
79 Xie Y, Wang Y, Chen Z, Xu X. Role of oxygen defects on the photocatalytic properties of Mg-doped mesoporous Ta3N5. ChemSusChem 2016;9(12):1403–12
80 Kado Y, Lee CY, Lee K, Müller J, Moll M, Spiecker E, et al.Enhanced water splitting activity of M-doped Ta3N5 (M= Na, K, Rb, Cs). Chem Commun 2012;48(69):8685–7
81 Seo J, Takata T, Nakabayashi M, Hisatomi T, Shibata N, Minegishi T, et al.Mg-Zr cosubstituted Ta3N5 photoanode for lower-onset-potential solar-driven photoelectrochemical water splitting. J Am Chem Soc 2015;137(40):12780–3
82 Pan C, Takata T, Kumamoto K, Khine Ma SS, Ueda K, Minegishi T, et al.Band engineering of perovskite-type transition metal oxynitrides for photocatalytic overall water splitting. J Mater Chem A 2016;4(12):4544–52
83 Xiong J, Han C, Li Z, Dou S. Effects of nanostructure on clean energy: Big solutions gained from small features. Sci Bull 2015;60(24):2083–90
84 Hisatomi T, Otani M, Nakajima K, Teramura K, Kako Y, Lu D, et al.Preparation of crystallized mesoporous Ta3N5 assisted by chemical vapor deposition of tetramethyl orthosilicate. Chem Mater 2010;22(13):3854–61
85 Maeda K, Nishimura N, Domen K. A precursor route to prepare tantalum (V) nitride nanoparticles with enhanced photocatalytic activity for hydrogen evolution under visible light. Appl Catal A Gen 2009;370(1–2):88–92
86 Yuliati L, Yang JH, Wang X, Maeda K, Takata T, Antonietti M, et al.Highly active tantalum (V) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. J Mater Chem 2010;20(21):4295–8
87 Tsang MY, Pridmore NE, Gillie LJ, Chou YH, Brydson R, Douthwaite RE. Enhanced photocatalytic hydrogen generation using polymorphic macroporous TaON. Adv Mater 2012;24(25):3406–9
88 John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 1987;58(23):2486–9
89 Chen JIL, von Freymann G, Choi SY, Kitaev V, Ozin GA. Amplified Photochemistry with slow photons. Adv Mater 2006;18(14):1915–9
90 Wang Z, Hou J, Yang C, Jiao S, Huang K, Zhu H. Hierarchical metastable γ-TaON hollow structures for efficient visible-light water splitting. Energy Environ Sci 2013;6(7):2134–44
91 Fukasawa Y, Takanabe K, Shimojima A, Antonietti M, Domen K, Okubo T. Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template. Chem Asian J 2011;6(1):103–9
92 Fu J, Skrabalak SE. Aerosol synthesis of shape-controlled template particles: A route to Ta3N5 nanoplates and octahedra as photocatalysts. J Mater Chem A 2016;4(21):8451–7
93 Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K. Surface modification of TaON with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light. Bull Chem Soc Jpn 2008;81(8):927–37
94 Maeda K, Higashi M, Lu D, Abe R, Domen K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 2010;132(16):5858–68
95 Ma SSK, Maeda K, Domen K. Modification of TaON with ZrO2 to improve photocatalytic hydrogen evolution activity under visible light: Influence of preparation conditions on activity. Catal Sci Technol 2012;2(4):818–23
96 Yuliati L, Maeda K, Takata T, Domen K. Modification of tantalum (V) nitride with zirconium oxide for photocatalytic hydrogen production under visible light irradiation. In: Proceedings of the 2012 International Conference on Enabling Science and Nanotechnology ; 2012 Jan 5–7; Johor Bahru, Malaysia. Piscataway: IEEE; 2012. p. 1–2
97 Chen S, Qi Y, Ding Q, Li Z, Cui J, Zhang F, et al.Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation. J Catal 2016;339:77–83
98 Qi Y, Chen S, Li M, Ding Q, Li Z, Cui J, et al.Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst. Chem Sci 2017;8(1):437–43
99 Li R, Han H, Zhang F, Wang D, Li C. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ Sci 2014;7(4):1369–76
100 Ma Y, Chong R, Zhang F, Xu Q, Shen S, Han H, et al.Synergetic effect of dual cocatalysts in photocatalytic H2 production on Pd-IrOx/TiO2: A new insight into dual cocatalyst location. Phys Chem Chem Phys 2014;16(33):17734–42
101 Jiang Q, Li L, Bi J, Liang S, Liu M. Design and synthesis of TiO2 hollow spheres with spatially separated dual cocatalysts for efficient photocatalytic hydrogen production. Nanomaterials 2017;7(2):24
102 Huang L, Wang X, Yang J, Liu G, Han J, Li C. Dual cocatalysts loaded type I CdS/ZnS core/shell nanocrystals as effective and stable photocatalysts for H2 evolution. J Phys Chem C 2013;117(22):11584–91
103 Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014;8(7):7078–87
104 Bi W, Li X, Zhang L, Jin T, Zhang L, Zhang Q, et al.Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat Commun 2015;6:8647
105 Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 2013;46(8):1900–9
106 Maeda K, Abe R, Domen K. Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light. J Phys Chem C 2011;115(7):3057–64
107 Maeda K, Teramura K, Lu D, Saito N, Inoue Y, Domen K. Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew Chem Int Ed 2006;118(46):7970–3
108 Maeda K, Teramura K, Lu D, Saito N, Inoue Y, Domen K. Roles of Rh/Cr2O3 (core/shell) nanoparticles photodeposited on visible-light-responsive (Ga1-xZnx)(N1-xOx) solid solutions in photocatalytic overall water splitting. J Phys Chem C 2007;111(20):7554–60
109 Maeda K, Sakamoto N, Ikeda T, Ohtsuka H, Xiong A, Lu D, et al.Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light. Chemistry 2010;16(26):7750–9
110 Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, et al.Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes. J Phys Chem C 2009;113(23):10151–7
111 Yagi M, Tomita E, Kuwabara T. Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation. J Electroanal Chem 2005;579(1):83–8
112 Zhao Y, Hernandez-Pagan EA, Vargas-Barbosa NM, Dysart JL, Mallouk TE. A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity. J Phys Chem Lett 2011;2(5):402–6
113 Nakagawa T, Bjorge NS, Murray RW. Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J Am Chem Soc 2009;131(43):15578–9
114 Yang L, Luo S, Li Y, Xiao Y, Kang Q, Cai Q. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol 2010;44(19):7641–6
115 Bessekhouad Y, Robert D, Weber JV. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal Today 2005;101(3–4):315–21
116 Daskalaki VM, Antoniadou M, Li Puma G, Kondarides DI, Lianos P. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ Sci Technol 2010;44(19):7200–5
117 Zhang LJ, Li S, Liu BK, Wang DJ, Xie TF. Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal 2014;4(10):3724–9
118 Liu X, Zhao L, Domen K, Takanabe K. Photocatalytic hydrogen production using visible-light-responsive Ta3N5 photocatalyst supported on monodisperse spherical SiO2 particulates. Mater Res Bull 2014;49:58–65
119 Luo Y, Liu X, Tang X, Luo Y, Zeng Q, Deng X, et al.Gold nanoparticles embedded in Ta2O5/Ta3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution. J Mater Chem A 2014;2(36):14927–39
120 Jang JS, Kim HG, Joshi UA, Jang JW, Lee JS. Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrogen Energy 2008;33(21):5975–80
121 Adhikari SP, Hood ZD, More KL, Ivanov I, Zhang L, Gross M, et al.Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3 composites. RSC Advances 2015;5(68):54998–5005
122 Higashi M, Abe R, Ishikawa A, Takata T, Ohtani B, Domen K. Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ<500 nm). Chem Lett 2008;37(2):138–9
123 Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, et al.Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 2010;26(12):9161–5
[1] Praewpilin Kangvansura, Ly May Chew, Chanapa Kongmark, Phatchada Santawaja, Holger Ruland, Wei Xia, Hans Schulz, Attera Worayingyong, Martin Muhler. Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation[J]. Engineering, 2017, 3(3): 385-392.
Full text



国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社