Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 330-342     https://doi.org/10.1016/J.ENG.2017.03.021
Research |
流化床生物反应器在污水处理中的应用研究和进展综述
Nelson Michael J.,Nakhla George,Zhu Jesse()
Particle Technology Research Center, The University of Western Ontario, London, ON N6A 5B9, Canada
全文: PDF(980 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

污水处理是保护环境和人类健康的重要过程。目前,最经济有效的污水处理方法为生物处理法,如运行时间较长的活性污泥法。然而,随着人口的增长,对新型高效污水处理技术的需求越来越迫切,流态化技术虽然已展示出能够提高许多化学与生化处理过程的效率,但尚未在大型污水处理过程中得到广泛的应用。循环流化床生物反应器(CFBBR) 污水处理技术的研究始于加拿大西安大略大学,在该技术中,载体颗粒表面会形成一层含细菌与其他微生物的生物膜,并在反应器中呈流化状态;流态化固有的良好混合和质量传递特性,使得该技术在生活污水和工业污水处理过程中均具优势。实验室阶段和中试阶段的研究均证实了CFBBR 可去除污水中90% 以上的碳源、80%以上的氮源,且污泥产量少于活性污泥法的1/3。由于该技术的高效性,CFBBR 还可被用于传统方法难以处理的高有机碳污水处理,且具有占地面积小的优势。同时,CFBBR 在动态负荷试验( 进水量和进水浓度变化) 中也展现了良好的抗冲击和恢复性能。总的来说,CFBBR 是一种高效的污水处理方法,可在较短的水力停留时间和较小的反应器体积内处理更多的污水。此外,该反应器的紧凑设计将有助于在偏僻地区建造独立的污水处理系统。

关键词 污水污水生物处理流化床技术生物流化床反应器生物营养物去除生物膜技术生物颗粒高效过程    
Abstract

Wastewater treatment is a process that is vital to protecting both the environment and human health. At present, the most cost-effective way of treating wastewater is with biological treatment processes such as the activated sludge process, despite their long operating times. However, population increases have created a demand for more efficient means of wastewater treatment. Fluidization has been demonstrated to increase the efficiency of many processes in chemical and biochemical engineering, but it has not been widely used in large-scale wastewater treatment. At the University of Western Ontario, the circulating fluidized-bed bioreactor (CFBBR) was developed for treating wastewater. In this process, carrier particles develop a biofilm composed of bacteria and other microbes. The excellent mixing and mass transfer characteristics inherent to fluidization make this process very effective at treating both municipal and industrial wastewater. Studies of lab- and pilot-scale systems showed that the CFBBR can remove over 90% of the influent organic matter and 80% of the nitrogen, and produces less than one-third as much biological sludge as the activated sludge process. Due to its high efficiency, the CFBBR can also be used to treat wastewaters with high organic solid concentrations, which are more difficult to treat with conventional methods because they require longer residence times; the CFBBR can also be used to reduce the system size and footprint. In addition, it is much better at handling and recovering from dynamic loadings (i.e., varying influent volume and concentrations) than current systems. Overall, the CFBBR has been shown to be a very effective means of treating wastewater, and to be capable of treating larger volumes of wastewater using a smaller reactor volume and a shorter residence time. In addition, its compact design holds potential for more geographically localized and isolated wastewater treatment systems.

Keywords Wastewater      Biological wastewater treatment      Fluidized-bed technology      Fluidized-bed reactor      Biological nutrient removal      Bio-particles      High-efficiency process     
基金资助: 
通讯作者: Zhu Jesse     E-mail: jzhu@uwo.ca
最新录用日期:    发布日期: 2017-06-30
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Michael J. Nelson
George Nakhla
Jesse Zhu
引用本文:   
Michael J. Nelson,George Nakhla,Jesse Zhu. Fluidized-Bed Bioreactor Applications for Biological Wastewater Treatment: A Review of Research and Developments[J]. Engineering, 2017, 3(3): 330-342.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.021     OR     http://engineering.org.cn/EN/Y2017/V3/I3/330
Fig.1  Layout of a conventional WWTP.
Fig.2  Attached-growth biological treatment.
Fig.3  Conventional twin fluidized-bed system. Adapted from Ref. [5].
Fig.4  Layout of a liquid fluidized bed with particle circulation. Adapted from Ref. [5].
Fig.5  Particle biofilm.
Fig.6  Diagram of the CFBBR design showing the directions of the gas, liquid, and solid flow [9].
Parameter Influent Effluent
COD 273 26
SCOD 73 21
NH 4 + N 19 0.7
NO 3 N 0.5 6.5
TN 31.2 8.6
TP 3.8
TSS 144
VSS 118
Tab.1  Influent and effluent qualities of the CFBBR (unit: mg·L-1) [9].
Fig.7  Diagram of the CFBBR-2 system [10].
Parameter Influent Effluent
COD 262 20
SCOD 234 9.5
NH 4 + N 26.1 0.5
NO 3 N 0.7 3.9
TN 29.5 5.4
TP 4.4 3.8
TSS 27 16.3
VSS 19 12
Tab.2  Influent and effluent quality of the CFBBR-2 system (unit: mg·L-1) [10].
Fig.8  Configuration of the pilot-scale CFBBR [12].
Parameter Phase I (2880 L·d-1) Phase II (4320 L·d-1) Phase III (5800 L·d-1)
Influent Effluent Influent Effluent Influent Effluent
TCOD 332 + 42 26 + 3 349 + 38 39 + 8 496 + 152 45 + 7
SCOD 71 + 14 13 + 4 100 + 16 15 + 4 117 + 23 23 + 5
NH 4 + N 22.1 + 5.2 1.2 + 0.5 24.6 + 2.9 0.9 + 0.3 25.8 + 1.1 9.5 + 0.9
NO 3 d f f f N + 0.9 + 0.6 3.6 + 1.2 0.4 + 0.1 4.7 + 1.3 0.4 + 0.1 2.8 + 0.6
TP 4.9 + 1 1 + 0.1 4.2 + 0.8 1.2 + 0.2 5.9 + 0.6 1.2 + 0.4
TSS 217 + 27 11 + 2 219 + 26 22 + 6 443 + 174 27 + 6
VSS 174 + 28 9 + 2 171 + 23 16 + 5 315 + 106 21 + 6
Tab.3  Influent and effluent data of the pilot-scale CFBBR study (unit: mg·L-1) [12].
Name Source HRT (h) EBCT (h) SRT (d) OLR [kg·(m3·d)-1] COD (%) N (%) P (%) Biomass yields [mg(VSS)·mg(COD)-1]
CFBBR-1 [9] 2.04 0.82 44–56 3.36 91 78 85 0.12–0.135
CFBBR-2 [10] 2.88 0.98 72–108 2.23 97 84 12 0.071
Pilot CFBBR [12] 2.03 1.5 20–39 4.12 90 80 70 0.12–0.16
UASB [14] 3.2 2.6 34
AnMBR [15] 7.92 5.9–19.8 58
Tab.4  Summary of BNR performance.
Parameter 5 m3·d-1 10 m3·d-1 20 m3·d-1
Influent Effluent Influent a Effluent Influent a Effluent
TCOD 578 41 289 64.2 144.5 63
SCOD 192 20 96 24.5 48 22
NH 4 + N 35.2 0.9 17.6 2 9.8 3.4
N O 3 N <0.06 5.4 <0.03 5.7 <0.2 6.9
P O 4 P <1 0.5 0.4
TP 12.5 1.3 6.3 1.8 3.2 2.7
TSS 443 32 221.5 111 38
VSS 339 22 169.5 85
Tab.5  Summary of steady-state and dynamic loading effluent quality in the pilot-scale CFBBR (unit: mg·L-1) [17].
BNR efficiency 5 m3·d-1 10 m3·d-1 20 m3·d-1
COD removal (%) 90 75 49
N removal (%) 80 39 23
P removal (%) 70 43 16
Tab.6  Summary of dynamic loading BNR efficiency in the pilot-scale CFBBR [17].
Process Source HRT (h) Influent (1COD, 2NH4, 3TSS, 4TN) (mg·L-1) Effluent (1COD, 2NH4, 3TSS, 4TN) (mg·L-1) Removal (1COD, 2TN, 3TP)
Submerged fixed-film [19] 3.2 1450, 3120,480 165, 211, 319 190%, 280%
0.7 1110, 255, 330 175%, 220%
Moving bed [20] 1.4 1527, 218.5 1121, 211, 353 175%
0.4 1230, 218, 3104 156%
Biological aerated filter [21] 2.0 1235 157, 319 185%
0.8 1138, 341 135%
CFBBR [17] 3.2 1578, 3443, 461 147, 21, 331 190%, 280%, 370%
0.8 165, 24.7, 350 149%, 223%, 316%
Tab.7  Comparison of dynamic loading effluent and nutrient removal percentages.
Parameter Before overload During overload 24 h after overload
Anoxic biofilm [mg(VSS)·g(particles)-1] 16.7 15.4 15.6
Aerobic biofilm [mg(VSS)·g(particles)-1] 6.9 6.2 6.3
Nitrification {g(NH4)·[g(VSS)·d-1]-1} 0.12 0.08 0.1
Denitrification {g(NO3)·[g(VSS)·d-1]-1} 0.34 0.28 0.31
Tab.8  Biomass characteristics during the dynamic loading study [17].
Parameter Column Phase I Phase II Phase III
Influent (L·d-1) 650 720 864
Avg. OLR [kg(COD)·(m3·d)-1] 1.90 2.15 2.60
EBCT (d) Aerobic 0.43 0.38 0.32
Anoxic 0.12 0.11 0.09
HRT (d) Aerobic 0.89 0.81 0.67
Anoxic 0.27 0.25 0.21
SRT (d) Aerobic 26 21 18
Anoxic 18 17 13
Tab.9  CFBBR operating conditions for leachate treatment [30].
Parameter Influent Effluent
Phase I Phase II Phase III
TCOD 1259 195 197 302
SCOD 1025 149 153 245
TSS 263 56 60 58
VSS 156 38 37 44
NH 4 - N 360 34.6 35.4 54.7
N O 3 + N 3.1 57.5 59.9 63.9
TP 6.2 1 1 1.2
Tab.10  Influent and effluent quality of leachate (unit: mg·L-1) [30].
Reactor type Influent COD (mg·L-1) HRT (h) COD removal (%) Source
CFBBR 1259 8 85 [30]
Trickling filter 800–1350 4.5 52 [31]
UASB 1120–3520 24 77 [32]
MBBR 1740–4850 36 60 [33]
FBBR 1100–3800 34 82 [34]
Tab.11  Comparison of leachate treatment methods.
Parameter Column Phase I Phase II Phase III
Influent flow (L·d-1) 2 + 0.1 1.5 + 0.05 1 + 0.05
OLR [kg(COD)·(m3·d)-1] 14.6 11 7.3
HRT (h) Anoxic 9.36 12.24 18.48
Aerobic 39.6 52.8 79.2
EBCT (h) Anoxic 5.52 7.36 11.04
Aerobic 14.16 18.88 28.32
SRT (d) Anoxic 2 4.8 20
Aerobic 3.2 7.1 33
Tab.12  Summary of rendering treatment operational parameters [36].
Parameter Influent Effluent
Phase I Phase II Phase III
TCOD 29 509 + 678 3 151 + 586 2 263 + 220 1 305 + 85
SCOD 28 527 + 283 1 466 + 465 1 039 + 118 853 + 32
NH4-N 605.3 + 6.2 121.8 + 23.1 94.4 + 9.6 0.9 + 0.4
NO3-N 3.8 + 4.4 8.9 + 2.9 5.5 + 1.3 3.1 + 0.7
TP 44.8 + 5.4 34.6 + 8.1 27.1 + 3.3 9.8 + 2.1
TSS 973 + 215 2 000 + 611 1 282 + 159 460.8 + 48.2
VSS 676 +160 1 379 + 369 908 + 89 329.9 + 51.8
Tab.13  Influent and effluent parameters of rendering treatment (unit: mg·L-1) [36].
Fig.9  Diagram of the AnFBR system [37].
Parameter Phase I Phase II Phase III Phase IV Phase V
HRT (d) 8.9 4.0 1.9 1.0 1.5
SRT (d) 17.2 6.9 2.9 1.1 1.7
VSSEff (mg·L-1) 3 693 6 326 9 364 21 320 18 069
VSS removal (%) 88 79 70 31 42
COD removal (%) 85 79 68 30 42
Tab.14  Summary of PS treatment [37].
Parameter Phase I Phase II Phase III Phase IV
HRT (d) 8.8 4.0 1.9 2.6
SRT (d) 16.7 7.2 2.7 2.8
VSSEff (mg·L-1) 9 390 13 300 20 400 17 800
VSS removal (%) 69 56 33 42
COD removal (%) 68 55 34 42
Tab.15  Summary of TWAS treatment [37].
Reactor type Sludge type OLR
[kg(COD)·(m3·d)-1]
COD removal (%) HRT (d) Source
AnFBR PS 4.2 85 8.9 [37]
CSTR PS 2.1–2.9 33–47 10–15 [39]
AnFBR TWAS 4.2 68 8.8 [37]
CSTR TWAS 1 24 20–40 [40]
AnMBR TWAS 2.4–2.6 48 7–15 [41]
Tab.16  Comparison of AnFBR treatment capability with those of conventional methods.
Parameter Influent Effluent
TSS 46 400 9 800
VSS 46 200 9 200
TCOD 129 300 14 400
SCOD 62 000 2 700
Tab.17  Summary of thin stillage treatment (unit: mg·L-1) [37].
Reactor type OLR [kg(COD)·(m3·d)-1] HRT (d) COD removal (%) Source
AnFBR 28–30 3.5 88 [37]
CSTR 1.6–3.9 24–40 85–86 [42]
ASBR 9.5 10 90 [44]
Tab.18  Comparison of AnFBR treatment of thin stillage with those of conventional methods.
Parameter Phase I Phase II Phase III Phase IV
Sim. Exp. Sim. Exp. Sim. Exp. Sim. Exp.
TCOD 35 26 + 3 37 39 + 8 45 41 + 14 49 45 + 7
SCOD 13 13 + 3 9 15 + 4 17 20 + 8 18 23 + 5
NH 4 + 0.8 1.2 + 0.5 1.1 0.9 + 0.6 1.4 0.9 + 0.6 2.4 3.9 + 0.9
N O 3 5 3.6 + 1.2 5.5 4.7 + 1.3 7.1 5.4 + 1.3 9.9 4.8 + 0.6
TN 7.9 6.2 + 1.1 9.7 7.6 + 1.3 11.5 9.4 + 1.1 15.7 11.5 + 1.2
P O 4 0.42 0.7 + 0.1 0.34 0.5 + 0.1 0.6 0.7 + 0.2 0.51 0.6 + 0.2
TP 1.12 1 + 0.1 1.1 1.2 + 0.2 1.9 1.3 + 0.4 1.39 1.2 + 0.4
VSS 20 11 + 2 25 22 + 6 25 41 + 20 25 27 + 6
TSS 15 9 + 2 19 16 + 5 17 21 + 8 19 21 + 6
Tab.19  Simulated vs. actual data from the pilot study (unit: mg·L-1) [49].
Parameter Feed Riser exp. Riser sim. Downer exp. Downer sim.
TCOD 398 + 52 101 + 40 97.4 50 + 21 59.6
SCOD 118 + 24 31 + 8 36.1 22 + 5 19.8
NH 4 + 30 + 4.5 4.10 + 0.4 4 0.9 + 0.4 0.72
N O 3 0.8 + 0.3 3.2 + 1.9 3.3 5.1 + 1.6 5.8
TP 6.5 + 1.4 3.2 + 0.6 6
TSS 214 + 41 62 + 30 51.2 33 + 14 54
VSS 183 + 30 50 + 27 43.8 24 + 10 37
Tab.20  Simulated vs. actual data (unit: mg·L-1) [50].
Parameter Feed Phase I Phase II
Sim. Exp. Sim. Exp.
TCOD 1259 + 77 236 197 + 46 235 302 + 98
SCOD 1025 + 27 169 153 + 43 169 245 + 85
NH4+ 360.0 + 59 33.7 35.4 + 13.1 54.7 54.7 + 11.2
NO3 3.1 + 1.5 61.1 59.9 + 31.1 58.4 63.9 + 10.3
TP 6.2 + 1.3 1.5 1.7 + 0.3 1.8 2.0 + 0.6
TSS 263 + 42 60 60 + 13 58 58 + 8
VSS 156 + 30 45 37 + 5 44 44 + 8
Tab.21  Simulated vs. actual data of leachate treatment in the CFBBR (unit: mg·L-1) [52].
AnFBRAnaerobic fluidized-bed bioreactor
BNRBiological nutrient removal
CFBBRCirculating fluidized-bed bioreactor
CODChemical oxygen demand
DODissolved oxygen
EBCTEmpty bed contact time
EBPREnhanced biological phosphorus removal
FBBRFluidized-bed bioreactor
HRTHydraulic retention time
MWWMunicipal wastewater
OLROrganic loading rate
PAOPolyphosphate accumulating organism
PSPrimary sludge
SCODSoluble chemical oxygen demand
SRTSolids retention time
TCODTotal chemical oxygen demand
TNTotal nitrogen
TPTotal phosphorus
TSSTotal suspended solids
TWASThickened waste activated sludge
VSSVolatile suspended solids
Tab.1  
1 Metcalf and Eddy Inc. Wastewater engineering: Treatment and reuse. 4th ed. New York: McGraw-Hill; 2003.
2 Cui Y, Nakhla G, Zhu J, Patel A. Simultaneous carbon and nitrogen removal in an anoxic-aerobic circulating fluidized bed biological reactor (CFBBR). Environ Technol 2004;25(6):699–712
https://doi.org/10.1080/09593330.2004.9619360
3 Kunii M, Levenspiel O. Fluidization engineering. 2nd ed. Boston: Butterworth; 1991.
4 Jahnig CE, Campbell DL, Martin HZ. History of fluidized solids development at EXXON. In: Grace JR, Matsen JM editors Fluidization. New York: Plenum Press; 1980. p. 3–24
https://doi.org/10.1007/978-1-4684-1045-7_1
5 Zhu J, Zheng Y, Karamanev D, Bassi A. (Gas-)liquid-solid circulating fluidized beds and the potential applications to bioreactor engineering. Can J Chem Eng 2000;78(1):82–94
https://doi.org/10.1002/cjce.5450780113
6 Grace JR. High velocity fluidized bed reactors. Chem Eng Sci 1990;45(8):1956–66
https://doi.org/10.1016/0009-2509(90)80070-U
7 Zheng Y, Zhu JX, Wen J, Martin S, Bassi AS, Margaritis A. The axial hydrodynamic behavior in a liquid-solid circulating fluidized bed. Can J Chem Eng 1999;77(2):284–90
https://doi.org/10.1002/cjce.5450770213
8 Patel A, Zhu JX, Nakhla G. Simultaneous carbon, nitrogen, and phosphorous removal from municipal wastewater in a circulating fluidized bed bioreactor. Chemosphere 2006;65(7):1103–12
https://doi.org/10.1016/j.chemosphere.2006.04.047
9 Chowdhury N, Zhu J, Nakhla G, Patel A, Islam M. A novel liquid-solid circulating fluidized bed bioreactor for biological nutrient removal from municipal wastewater. Chem Eng Technol 2009;32(3):364–72
https://doi.org/10.1002/ceat.200800564
10 Andalib M, Nakhla G, Zhu J. Biological nutrient removal using a novel laboratory-scale twin fluidized bed bioreactor. Chem Eng Technol 2010;33(7):1125–36
https://doi.org/10.1002/ceat.201000079
11 Environmental and Engineering Service Department. 2016 annual report. Adelaide wastewater treatment plant. Report. 2017 Feb. Report No.: 7397-96SPH7.
12 Chowdhury N, Nakhla G, Zhu J, Islam M. Pilot-scale experience with biological nutrient removal and biomass yield reduction in a liquid-solid circulating fluidized bed bioreactor. Water Environ Res 2010;82(9):772–81
https://doi.org/10.2175/106143010X12609736967080
13 Sutton PM, Mishra PN. Fludized bed biological wastewater treatment: Effects of scale-up on system performance. Water Sci Technol 1990;22:419–30.
14 La Motta E, Silva E, Bustillos A, Padron H, Luque J. Combined anaerobic/aerobic secondary municipal wastewater treatment pilot-plant demonstration of the UASB/aerobic solids contact system. J Environ Eng 2007;133(4):397–403
https://doi.org/10.1061/(ASCE)0733-9372(2007)133:4(397)
15 Zhang X, Wang Z, Wu Z, Lu F, Tong J, Zang L. Formation of dynamic membrane in an anaerobic membrane bioreactors for municipal wastewater treatment. Chem Eng J 2010;165(1):175–83
https://doi.org/10.1016/j.cej.2010.09.013
16 Kim Y, Pipes OW. Solids routing in an activated sludge process during hydraulic overload. Water Sci Technol 1996;34(3–4):9–16
https://doi.org/10.1016/0273-1223(96)00550-1
17 Chowdhury N, Zhu J, Naklha G. Effect of dynamic loading on biological nutrient removal in a pilot-scale liquid-solid circulating fluidized bed bioreactor. J Environ Eng 2010;136(9):906–13
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000221
18 US EPA. Guidelines for water reuse. Washington, DC: EPA; 2004 Sep. EPA-625/R-04–004.
19 Galvez JM, Gomez MA, Hontoria E, Gonzelez-Lopez J. Influence of hydraulic loading and air flowrate on urban wastewater nitrogen removal with submerged fixed-film reactor. J Hazard Mater 2003;101(2):219–29
https://doi.org/10.1016/S0304-3894(03)00173-0
20 Rusten B, McCoy M, Proctor R, Siljudalen G. The innovative moving bed biofilm reactor/solids contact reaction process for secondary treatment of municipal wastewater. Water Environ Res 1998;70(5):1083–9
https://doi.org/10.2175/106143098X123435
21 Mann AT, Mendoza-Espinosa L, Stephenson T. Performance of floating and sunken media biological aerated filters under unsteady state conditions. Water Resour 1999;33(4):1108–13
https://doi.org/10.1016/s0043-1354(98)00301-7
22 Andalib M, Nakhla G, Zhu J. Dynamic testing of a twin circulating fluidized bed bioreactor (TCFBBR) for nutrient removal from municipal wastewater. Chem Eng J 2010;162(2):616–25
https://doi.org/10.1016/j.cej.2010.06.009
23 Janssen P, Rulkens W, Rensink J, van der Roest H. The potential for metazoa in biological wastewater treatment. Water Qual Int 1998;(20):25–7.
24 Elissen H, Hendricks T, Temmink H, Buisman C. A new reactor concept for sludge reduction using aquatic worms. Water Resour 2006;40(20):3713–8
https://doi.org/10.1016/j.watres.2006.08.029
25 Hendrickx T, Elissen H, Buisman C. Design parameters for sludge reduction in an aquatic worm reactor. Water Resour 2010;44(3):1017–23
https://doi.org/10.1016/j.watres.2009.10.025
26 Liang P, Huang X, Qian Y. Excess sludge reduction in activated sludge process through predation of Aeolosoma hemprichi. Biochem Eng J 2006;28(2):117–22
https://doi.org/10.1016/j.bej.2005.09.008
27 Li M, Nakhla G, Zhu J. Impact of worm predation of pseudo-steady-state of the circulating fluidized bed biofilm reactor. Bioresour Technol 2013;128:281–9
https://doi.org/10.1016/j.biortech.2012.10.069
28 Islam M, Nakhla G, Zhu J, Chowdhury N. Impact of carbon to nitrogen ratio on nutrient removal in a liquid-solid circulating fluidized bed bioreactor (LSCFB). Process Biochem 2009;44(5):578–83
https://doi.org/10.1016/j.procbio.2009.02.003
29 Haq I. Environmental impact assessment study: Leaching of chemical contaminants from a municipal dump site Hastsal, Delhi (capital of India). Int J Environ Stud 2003;60(4):363–77
https://doi.org/10.1080/00207230304732
30 Eldyasti A, Chowdhury N, George N, Zhu J. Biological nutrient removal from leachate using a pilot liquid-solid circulating fluidized bed bioreactor (LSCFB). J Hazard Mater 2010;181(1–3):289–97
https://doi.org/10.1016/j.jhazmat.2010.05.010
31 Gourdon R, Comel C, Vermande P, Vernon J. Fractionation of the organic matter of a landfill leachate before and after aerobic or anaerobic biological treatment. Water Res 1989;23(2):167–74
https://doi.org/10.1016/0043-1354(89)90040-7
32 Kennedy KJ, Lentz EM. Treatment of landfill leachate using sequencing batch and continuous flow upflow anaerobic sludge blanket (UASB) reactors. Water Res 2000;34(14):3640–56
https://doi.org/10.1016/S0043-1354(00)00114-7
33 Horan N, Gohar H, Hill B. Application of a granular activated carbon-biological fluidized bed for the treatment of landfill leachate containing high concentrations of ammonia. Water Sci Technol 1997;36(2–3):369–75
https://doi.org/10.1016/S0273-1223(97)00410-1
34 Suidan MT, Schroeder AT, Nath R, Krishnan ET, Brenner RC. Treatment of CERCLA (comprehensive environmental response, compensation, and liability act) leachates by carbon-assisted anaerobic fluidized beds. Water Sci Technol 1993;27(2):273–82.
35 del Pozo R, Tas D, Dulkadiroglu H, Orhon D, Diez V. Biodegradability of slaughterhouse wastewater with high blood content under anaerobic and aerobic conditions. J Chem Technol Biotechnol 2003;78(4):384–91
https://doi.org/10.1002/jctb.753
36 Islam M, Chowdhury N, Nakhla G, Zhu J. Treatment of rendering wastewater by a liquid-solid circulating fluidized bed bioreactor (LSCFB). Proceed Water Environ Fed 2009;(12):4111–9.
37 Andalib M, Elberbishy E, Mustafa N, Hafez H. Performance of an anaerobic fluidized bed bioreactor (AnFBR) for digestion of primary municipal wastewater treatment biosolids and bioethanol thin stillage. Renew Energy 2014;71(3):276–85
https://doi.org/10.1016/j.renene.2014.05.039
38 Vesilind PA, editor. Wastewater treatment plant design. London: Water Environment Federation and IWA Publishing; 2003.
39 Han Y, Dague R. Laboratory studies on the temperature-phased anaerobic digestion of domestic primary sludge. Water Environ Res 1997;69(6):1139–43
https://doi.org/10.2175/106143097X125885
40 Bolzonella D, Pavan P, Battistoni P, Cecchi F. Mesophilic anaerobic digestion of waste activated sludge: Influence of solid retention time in the wastewater treatment process. Process Biochem 2005;40(3–4):1453–60
https://doi.org/10.1016/j.procbio.2004.06.036
41 Dagnew M, Pickel J, Parker W, Seto P. Anaerobic membrane bio-reactors for waste activated sludge digestion: Tubular versus hollow fiber membrane configurations. Environ Prog Sustain Energy 2012;32(3):598–604
https://doi.org/10.1002/ep.11670
42 Lee P, Bae J, Kim J, Chen W. Mesophilic anaerobic digestion of corn thin stillage: A technical and energetic assessment of the corn-to-ethanol industry integrated with anaerobic digestion. J Chem Technol Biotechnol 2011;86(12):1514–20
https://doi.org/10.1002/jctb.2664
43 Andalib M, Hafez H, Elbeshbishy E, Nakhla G, Zhu J. Treatment of thin stillage in a high-rate anaerobic fluidized bed bioreactor (AFBR). Bioresour Technol 2012;121(7):411–8
https://doi.org/10.1016/j.biortech.2012.07.008
44 Agler MT, Garcia ML, Lee ES, Schlicher M, Angement LT. Thermophilic anaerobic digestion to increase the net energy balance of corn grain ethanol. Environ Sci Technol 2008;42(17):6723–9
https://doi.org/10.1021/es800671a
45 Sen D, Randall C. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part I: Semi empirical model development. Water Environ Res 2008;80(5):439–53.
46 Sen D, Randall C. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part II: Multilayer biofilm diffusion model. Water Environ Res 2008;80(7):624–32
https://doi.org/10.2175/106143008X268434
47 Sen D, Randall C. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, part III: Analysis and verification. Water Environ Res 2008;80(7):633–45
https://doi.org/10.2175/106143008X268443
48 Phillips H, Maxwell M, Johnson T, Barnard J, Rutt K, Seda J, et al.Optimizing IFAS and MMBR designs using full-scale data. In: Proceedings of the Water Environment Federation 81st Annual Technical Exhibition & Conference; 2008 Oct 18–22; Chicago, USA. Alexandria: Water Environment Federation; 2008. p. 5002–21.
49 Chowdhury N, Nakhla G, Sen D, Zhu J. Modeling biological nutrient removal in a liquid-solid circulating fluidized bed bioreactor. J Chem Technol Biotechnol 2010;85(10):1389–401
https://doi.org/10.1002/jctb.2445
50 Andalib M, Nakhla G, Sen D, Zhu J. Evaluation of biological nutrient removal from wastewater by twin circulating fluidized bed bioreactor (TCFBBR) using a predictive fluidization model and AQUIFAS APP. Bioresour Technol 2011;102(3):2400–10
https://doi.org/10.1016/j.biortech.2010.10.110
51 McGehee M, Gellner J, Beck J, White C, Bruton T, Howard D. BioWin modeling of a three phase reactor IFAS system. In: Proceedings of the Water Environment Federation 82nd Annual Technical Exhibition & Conference; 2009 Oct; Orlando, USA. Alexandria: Water Environment Federation; 2009. p. 2730–50.
52 Eldyasti A, Andalib M, Hafez H, Nakhla G, Zhu J. Comparative modeling of biological nutrient modeling from landfill leachate using a circulating fluidized bed bioreactor (CFBBR). J Hazard Mater 2011; 187 (1–3):140–9
https://doi.org/10.1016/j.jhazmat.2010.12.115
[1] Wen-Wei Li, Han-Qing Yu. Advances in Energy-Producing Anaerobic Biotechnologies for Municipal Wastewater Treatment[J]. Engineering, 2016, 2(4): 438-446.
[2] Tomomi Uchiyama, Satoshi Honda, Tomoko Okayama, Tomohiro Degawa. A Feasibility Study of Power Generation from Sewage Using a Hollowed Pico-Hydraulic Turbine[J]. Engineering, 2016, 2(4): 510-517.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering