Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 343-353     https://doi.org/10.1016/J.ENG.2017.03.022
Research |
制药工业中结晶过程的最新进展
高振国1,2,Rohani Sohrab1(),龚俊波2,王静康2
1. Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
全文: PDF(2534 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

结晶是古老的分离与提纯单元操作之一,如今已发展成为生产具有特定性质的高附加值产品以及建立高效制造过程的技术。本文中,我们综述了制药工业中晶体工程以及结晶过程设计和控制的最新研究进展,系统地总结了理解和开发新型晶体如共晶、多晶型、溶剂化物的方法,包括一些重要的进展,如第一个共晶药物Entresto (诺华) 的诞生以及Orkambi (福泰) 连续制造过程获批。与不同的过程控制策略和新型的结晶器相结合,传统的釜式和日渐成熟的连续结晶过程正不断地满足制药工业的需求。结晶过程的设计和控制已使几种创新型结晶器的设计实现连续操作且性能良好。本文还综述了过程分析技术最新的重要研究进展。

关键词 结晶晶体工程多晶型结晶过程设计和控制晶体粒度分布    
Abstract

Crystallization is one of the oldest separation and purification unit operations, and has recently contributed to significant improvements in producing higher-value products with specific properties and in building efficient manufacturing processes. In this paper, we review recent developments in crystal engineering and crystallization process design and control in the pharmaceutical industry. We systematically summarize recent methods for understanding and developing new types of crystals such as co-crystals, polymorphs, and solvates, and include several milestones such as the launch of the first co-crystal drug, Entresto (Novartis), and the continuous manufacture of Orkambi (Vertex). Conventional batch and continuous processes, which are becoming increasingly mature, are being coupled with various control strategies and the recently developed crystallizers are thus adapting to the needs of the pharmaceutical industry. The development of crystallization process design and control has led to the appearance of several new and innovative crystallizer geometries for continuous operation and improved performance. This paper also reviews major recent progress in the area of process analytical technology.

Keywords Crystallization      Crystal engineering      Polymorphism      Crystallization process design and control      Crystal size distribution     
基金资助: 
通讯作者: Rohani Sohrab     E-mail: srohani@uwo.ca
最新录用日期:    发布日期: 2017-06-30
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Zhenguo Gao
Sohrab Rohani
Junbo Gong
Jingkang Wang
引用本文:   
Zhenguo Gao,Sohrab Rohani,Junbo Gong, et al. Recent Developments in the Crystallization Process: Toward the Pharmaceutical Industry[J]. Engineering, 2017, 3(3): 343-353.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.022     OR     http://engineering.org.cn/EN/Y2017/V3/I3/343
Fig.1  Structural diversity of pharmaceutical solids. (Caption and figure reprinted with permission from Ref. [36])
Fig.2  Crystallization experiments showing the timescales that can be employed to favor stable or metastable polymorphs. (Caption and figure reprinted with permission from Ref. [38])
Fig.3  The biopharmaceutics classification system (BCS), as defined by Amidon et al. [51], divided into four classes of solubility. Viable formulation options based on the BCS and the proportion of marketed drugs versus pipeline drugs (insert column chart). (Adapted from Refs. [49,52])
Selection/screening methods Key notes
Co-former selection methods Supramolecular compatibility Based on Cambridge Structural Database or Hansen solubility parameter prediction
Shape and polarity analysis Based on shape and polarity of co-former and API
Lattice energy calculation Based on lattice energy minimization methodology
Virtual co-crystal screening Based on molecular electrostatic potential surfaces
Conductor-like screening Fluid-phase thermodynamics theory conductor-like screening model
Experimental screening technologies Solvent evaporation The most widely used, cost-efficient method
Solution co-crystallization Cooling, anti-solvent, slurry, ultrasound-assisted, and microwave-assisted crystallization
Mechanical grinding Neat solvent/polymer-assisted grinding
Supercritical fluid technology Co-crystallization with supercritical solvent
DSC-FTIR micro spectroscopy Simultaneous DSC-FTIR micro spectroscopic system
High-throughput technology Using in situ Raman microscope and a multi-well plate, high efficiency
Spray drying A promising method for large-scale co-crystal generation
High-shear granulation High-shear wet granulation
Tab.1  Co-former selection methods and experimental screening technologies for co-crystal preparation. (Summarized from Refs. [74,76,77])
Fig.4  Schematic representation of the model-based and model-free approaches for crystallization systems. (Caption and figure reprinted with permission from Ref. [103])
Fig.5  Schematic drawings of (a) a typical microfluidic crystallizer, (b) a continuous oscillatory baffled crystallizer, and (c) an internal circulation airlift crystallizer. (Parts (a) and (b) are adapted from Refs. [117,129])
Fig.6  Schematic diagram of a double-jacket tubular crystallizer with an anti-solvent tube and a Kenics static mixer inside to promote homogeneous mixing. TT: temperature transmitter.
1 D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994;91(9):4082–5
https://doi.org/10.1073/pnas.91.9.4082
2 Wnendt S, Finkam M, Winter W, Ossig J, Raabe G, Zwingenberger K. Enantioselective inhibition of TNF-α release by thalidomide and thalidomide-analogues. Chirality 1996;8(5):390–6
https://doi.org/10.1002/(SICI)1520-636X(1996)8:5<390::AID-CHIR6>3.0.CO;2-I
3 Bauer JF, Saleki-Gerhardt A, Narayanan BA, Chemburkar SR, Patel KM, Spiwek HO, et al., inventors; Abbott Laboratories, assignee. Polymorph of a pharmaceutical. United States patent US 8193367 B2. 2012 Jun 5.
4 Bauer J, Spanton S, Henry R, Quick J, Dziki W, Porter W, et al.Ritonavir: An extraordinary example of conformational polymorphism. Pharm Res 2001;18(6):859–66
https://doi.org/10.1023/A:1011052932607
5 Huang LF, Tong WQ. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev 2004;56(3):321–34
https://doi.org/10.1016/j.addr.2003.10.007
6 Lee AY, Erdemir D, Myerson AS. Crystal polymorphism in chemical process development. Annu Rev Chem Biomol Eng 2011;2:259–80
https://doi.org/10.1146/annurev-chembioeng-061010-114224
7 Sood J, Sapra B, Bhandari S, Jindal M, Tiwary AK. Understanding pharmaceutical polymorphic transformations I: Influence of process variables and storage conditions. Ther Deliv 2014;5(10):1123–42
https://doi.org/10.4155/tde.14.68
8 Wu JX, Xia D, van den Berg F, Amigo JM, Rades T, Yang M, et al.A novel image analysis methodology for online monitoring of nucleation and crystal growth during solid state phase transformations. Int J Pharm 2012;433(1–2):60–70
https://doi.org/10.1016/j.ijpharm.2012.04.074
9 Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD, Waychunas GA, et al.Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 2013;341(6148):885–9
https://doi.org/10.1126/science.1230915
10 Kuhs M, Zeglinski J, Rasmuson ÅC. Influence of history of solution in crystal nucleation of fenoxycarb: Kinetics and mechanisms. Cryst Growth Des 2014;14(3):905–15
https://doi.org/10.1021/cg4007795
11 Ito F, Suzuki Y, Fujimori J, Sagawa T, Hara M, Seki T, et al.Direct visualization of the two-step nucleation model by fluorescence color changes during evaporative crystallization from solution. Sci Rep 2016;6:22918
https://doi.org/10.1038/srep22918
12 Srisanga S, Flood AE, Galbraith SC, Rugmai S, Soontaranon S, Ulrich J. Crystal growth rate dispersion versus size-dependent crystal growth: Appropriate modeling for crystallization processes. Cryst Growth Des 2015;15(5):2330–6
https://doi.org/10.1021/acs.cgd.5b00126
13 Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, et al.End-to-end continuous manufacturing of pharmaceuticals: Integrated synthesis, purification, and final dosage formation. Angew Chem Int Ed 2013;52(47):12359–63
https://doi.org/10.1002/anie.201305429
14 Myerson AS, Krumme M, Nasr M, Thomas H, Braatz RD. Control systems engineering in continuous pharmaceutical manufacturing. May 20–21, 2014 Continuous Manufacturing Symposium. J Pharm Sci 2015;104(3):832–9
https://doi.org/10.1002/jps.24311
15 Adamo A, Beingessner RL, Behnam M, Chen J, Jamison TF, Jensen KF, et al.On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 2016;352(6281):61–7
https://doi.org/10.1126/science.aaf1337
16 Woo XY, Tan RB, Braatz RD. Precise tailoring of the crystal size distribution by controlled growth and continuous seeding from impinging jet crystallizers. CrystEngComm 2011;13(6):2006–14
https://doi.org/10.1039/c0ce00637h
17 Kee NC, Tan RB, Braatz RD. Selective crystallization of the metastable α-form of L-glutamic acid using concentration feedback control. Cryst Growth Des 2009;9(7):3044–51
https://doi.org/10.1021/cg800546u
18 Singh MR. Towards the control of crystal shape and morphology distributions in crystallizers [dissertation]. West Lafayette: Purde University; 2013.
19 Wang Y, Chen A. Crystallization-based separation of enantiomers. In: Andrushko V, Andrushko N, editors Stereoselective synthesis of drugs and natural products, two volume set. 1st ed. Hoboken: John Wiley & Sons, Inc.; 2013. p. 1663–82
https://doi.org/10.1002/9781118596784.ssd056
20 Nagy ZK, Fevotte G, Kramer H, Simon LL. Recent advances in the monitoring, modelling and control of crystallization systems. Chem Eng Res Des 2013;91(10):1903–22
https://doi.org/10.1016/j.cherd.2013.07.018
21 US Food and Drug Administration. Pharmaceutical cGMPs for the 21st century—A risk based approach. Final report. US Food and Drug Administration; 2004 Sep.
22 Chew W, Sharratt P. Trends in process analytical technology. Anal Methods 2010;2(10):1412–38
https://doi.org/10.1039/c0ay00257g
23 Nagy ZK, Braatz RD. Advances and new directions in crystallization control. Annu Rev Chem Biomol Eng 2012;3:55–75
https://doi.org/10.1146/annurev-chembioeng-062011-081043
24 Yang Y, Nagy ZK. Advanced control approaches for combined cooling/antisolvent crystallization in continuous mixed suspension mixed product removal cascade crystallizers. Chem Eng Sci 2015;127:362–73
https://doi.org/10.1016/j.ces.2015.01.060
25 Yang Y, Song L, Nagy ZK. Automated direct nucleation control in continuous mixed suspension mixed product removal cooling crystallization. Cryst Growth Des 2015;15(12):5839–48
https://doi.org/10.1021/acs.cgd.5b01219
26 Raphael M, Rohani S. Sunflower protein precipitation in a tubular precipitator. Can J Chem Eng 1999;77(3):540–54
https://doi.org/10.1002/cjce.5450770315
27 Alvarez AJ, Myerson AS. Continuous plug flow crystallization of pharmaceutical compounds. Cryst Growth Des 2010;10(5):2219–28
https://doi.org/10.1021/cg901496s
28 Brown CJ, Ni XW. Evaluation of growth kinetics of antisolvent crystallization of paracetamol in an oscillatory baffled crystallizer utilizing video imaging. Cryst Growth Des 2011;11(9):3994–4000
https://doi.org/10.1021/cg200560b
29 McGlone T, Briggs NE, Clark CA, Brown CJ, Sefcik J, Florence AJ. Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization. Org Process Res Dev 2015;19(9):1186–202
https://doi.org/10.1021/acs.oprd.5b00225
30 Jiang X, Lu D, Wu X, Ruan X, Fang J, He G. Membrane assisted cooling crystallization: Process model, nucleation, metastable zone, and crystal size distribution. AIChE J 2016;62(3):829–41
https://doi.org/10.1002/aic.15069
31 Lakerveld R, van Krochten JJ, Kramer HJ. An air-lift crystallizer can suppress secondary nucleation at a higher supersaturation compared to a stirred crystallizer. Cryst Growth Des 2014;14(7):3264–75
https://doi.org/10.1021/cg500090g
32 Liu WJ, Ma CY, Wang XZ. Novel impinging jet and continuous crystallizer design for rapid reactive crystallization of pharmaceuticals. Procedia Eng 2015;102:499–507
https://doi.org/10.1016/j.proeng.2015.01.199
33 Yazdanpanah N, Ferguson ST, Myerson AS, Trout BL. Novel technique for filtration avoidance in continuous crystallization. Cryst Growth Des 2016;16(1):285–96
https://doi.org/10.1021/acs.cgd.5b01231
34 Schmidt GM. Photodimerization in the solid state. Pure Appl Chem 1971;27(4):647–78
https://doi.org/10.1351/pac197127040647
35 Mahata G, Dey S, Chanda J. Crystal engineering: A powerful tool towards designing pharmaceutical solids with desirable physicochemical properties. Am J Drug Dis 2014;1(1):1–9.
36 Cherukuvada S, Nangia A. Eutectics as improved pharmaceutical materials: Design, properties and characterization. Chem Commun 2014;50(8):906–23
https://doi.org/10.1039/C3CC47521B
37 Desiraju GR. Crystal engineering: A holistic view. Angew Chem Int Ed 2007;46(44):8342–56
https://doi.org/10.1002/anie.200700534
38 LlinàsA, Goodman JM. Polymorph control: Past, present and future. Drug Discov Today 2008;13(5–6):198–210
https://doi.org/10.1016/j.drudis.2007.11.006
39 Mirmehrabi M, Rohani S. An approach to solvent screening for crystallization of polymorphic pharmaceuticals and fine chemicals. J Pharm Sci 2005;94(7):1560–76
https://doi.org/10.1002/jps.20371
40 Allesø M, van den Berg F, Cornett C, Jørgensen FS, Halling-Sørensen B, de Diego HL, et al.Solvent diversity in polymorph screening. J Pharm Sci 2008;97(6):2145–59
https://doi.org/10.1002/jps.21153
41 Pfund LY, Matzger AJ. Towards exhaustive and automated high-throughput screening for crystalline polymorphs. ACS Comb Sci 2014;16(7):309–13
https://doi.org/10.1021/co500043q
42 Storey R, Docherty R, Higginson P, Dallman C, Gilmore C, Barr G, et al.Automation of solid form screening procedures in the pharmaceutical industry—How to avoid the bottlenecks. Crystallogr Rev 2004;10(1):45–56
https://doi.org/10.1080/08893110410001664846
43 Kralj D, Brečević L, Kontrec J. Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation. J Cryst Growth 1997;177(3–4):248–57
https://doi.org/10.1016/S0022-0248(96)01128-1
44 Sheikholeslamzadeh E, Rohani S. Modeling and optimal control of solution mediated polymorphic transformation of L-glutamic acid. Ind Eng Chem Res 2013;52(7):2633–41
https://doi.org/10.1021/ie302683u
45 Trifkovic M, Rohani S, Sheikhzadeh M. Kinetics estimation and polymorphic transformation modeling of buspirone hydrochloride. J Cryst Process Technol 2012;2(2):31–43
https://doi.org/10.4236/jcpt.2012.22006
46 Simone E, Saleemi AN, Nagy ZK. In situ monitoring of polymorphic transformations using a composite sensor array of Raman, NIR, and ATR-UV/vis spectroscopy, FBRM, and PVM for an intelligent decision support system. Org Process Res Dev 2015;19(1):167–77
https://doi.org/10.1021/op5000122
47 Takeguchi K, Obitsu K, Hirasawa S, Orii R, Ieda S, Okada M, et al.Effect of temperature and solvent of solvent-mediated polymorph transformation on ASP3026 polymorphs and scale-up. Org Process Res Dev 2016;20(5):970–6
https://doi.org/10.1021/acs.oprd.6b00068
48 US Food and Drug Administration. Guidance for industry: ANDAs: Pharmaceutical solid polymorphism: Chemistry, manufacturing, and controls information. Silver Spring: Center for Drug Evaluation and Research, US Food and Drug Administration; 2007 Jul.
49 Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int J Pharm 2011;420(1):1–10
https://doi.org/10.1016/j.ijpharm.2011.08.032
50 Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm 2004;58(2):265–78
https://doi.org/10.1016/j.ejpb.2004.03.001
51 Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12(3):413–20
https://doi.org/10.1023/A:1016212804288
52 Lin SY. Molecular perspectives on solid-state phase transformation and chemical reactivity of drugs: Metoclopramide as an example. Drug Discov Today 2015;20(2):209–22
https://doi.org/10.1016/j.drudis.2014.10.001
53 Almeida e Sousa L, Reutzel-Edens SM, Stephenson GA, Taylor LS. Assessment of the amorphous “solubility” of a group of diverse drugs using new experimental and theoretical approaches. Mol Pharm 2015;12(2):484–95
https://doi.org/10.1021/mp500571m
54 Skrdla PJ, Floyd PD, Dell’orco PC. Practical estimation of amorphous solubility enhancement using thermoanalytical data: Determination of the amorphous/crystalline solubility ratio for pure indomethacin and felodipine. J Pharm Sci 2016;105(9):2625–30
https://doi.org/10.1016/j.xphs.2016.03.036
55 Yu L. Amorphous pharmaceutical solids: Preparation, characterization and stabilization. Adv Drug Deliv Rev 2001;48(1):27–42
https://doi.org/10.1016/S0169-409X(01)00098-9
56 Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev 2016;100:116–25
https://doi.org/10.1016/j.addr.2015.12.009
57 Löbmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Amino acids as co-amorphous stabilizers for poorly water soluble drugs—Part 1: Preparation, stability and dissolution enhancement. Eur J Pharm Biopharm 2013;85(3 Pt B):873–81
https://doi.org/10.1016/j.ejpb.2013.03.014
58 US Food and Drug Administration. Naming of drug products containing salt drug substances; guidance for industry; availability. Silver Spring: Center for Drug Evaluation and Research, US Food and Drug Administration; 2015 Jun.
59 Fernández Casares A, Nap WM, Ten Figás G, Huizenga P, Groot R, Hoffmann M. An evaluation of salt screening methodologies. J Pharm Pharmacol 2015;67(6):812–22
https://doi.org/10.1111/jphp.12377
60 Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev 2007;59(7):603–16
https://doi.org/10.1016/j.addr.2007.05.010
61 Saal C, Becker A. Pharmaceutical salts: A summary on doses of salt formers from the Orange Book. Eur J Pharm Sci 2013;49(4):614–23
https://doi.org/10.1016/j.ejps.2013.05.026
62 Prohotsky DL, Zhao F. A survey of top 200 drugs—Inconsistent practice of drug strength expression for drugs containing salt forms. J Pharm Sci 2012;101(1):1–6
https://doi.org/10.1002/jps.22735
63 Thackaberry EA. Non-clinical toxicological considerations for pharmaceutical salt selection. Expert Opin Drug Metab Toxicol 2012;8(11):1419–33
https://doi.org/10.1517/17425255.2012.717614
64 Bolla G, Nangia A. Pharmaceutical cocrystals: Walking the talk. Chem Commun 2016;52(54):8342–60
https://doi.org/10.1039/C6CC02943D
65 Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzmán HR, et al.Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc 2003;125(28):8456–7
https://doi.org/10.1021/ja035776p
66 Wang JR, Yu Q, Dai W, Mei X. Drug-drug co-crystallization presents a new opportunity for the development of stable vitamins. Chem Commun 2016;52(17):3572–5
https://doi.org/10.1039/C5CC10297A
67 Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al.Polymorphs, salts, and cocrystals: What’s in a name? Cryst Growth Des 2012;12(5):2147–52
https://doi.org/10.1021/cg3002948
68 US Food and Drug Administration. Guidance for industry: Regulatory classification of pharmaceutical co-crystals. Silver Spring: Center for Drug Evaluation and Research, US Food and Drug Administration; 2013 Apr.
69 Chen Y, Li L, Yao J, Ma YY, Chen JM, Lu TB. Improving the solubility and bioavailability of apixaban via apixaban-oxalic acid cocrystal. Cryst Growth Des 2016;16(5):2923–30
https://doi.org/10.1021/acs.cgd.6b00266
70 Chattoraj S, Shi L, Chen M, Alhalaweh A, Velaga S, Sun CC. Origin of deteriorated crystal plasticity and compaction properties of a 1:1 cocrystal between piroxicam and saccharin. Cryst Growth Des 2014;14(8):3864–74
https://doi.org/10.1021/cg500388s
71 Weyna DR, Cheney ML, Shan N, Hanna M, Zaworotko MJ, Sava V, et al.Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. Mol Pharm 2012;9(7):2094–102
https://doi.org/10.1021/mp300169c
72 Aakeröy CB, Forbes S, Desper J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc 2009;131(47):17048–9
https://doi.org/10.1021/ja907674c
73 Steed JW. The role of co-crystals in pharmaceutical design. Trends Pharmacol Sci 2013;34(3):185–93
https://doi.org/10.1016/j.tips.2012.12.003
74 Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: Along the path to improved medicines. Chem Commun 2016;52(4):640–55
https://doi.org/10.1039/C5CC08216A
75 Wu TK, Lin SY, Lin HL, Huang YT. Simultaneous DSC-FTIR microspectroscopy used to screen and detect the co-crystal formation in real time. Bioorg Med Chem Lett 2011;21(10):3148–51
https://doi.org/10.1016/j.bmcl.2011.03.001
76 Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: Towards the development of effective therapeutic hybrids. Drug Discov Today 2016;21(3):481–90
https://doi.org/10.1016/j.drudis.2016.02.001
77 Fábián L. Cambridge structural database analysis of molecular complementarity in cocrystals. Cryst Growth Des 2009;9(3):1436–43
https://doi.org/10.1021/cg800861m
78 Hilfiker R, editor. Polymorphism: In the pharmaceutical industry. Hoboken: John Wiley & Sons, Inc.; 2006.
79 Berziņš A, Skarbulis E, Rekis T, Actiņš A. On the formation of droperidol solvates: Characterization of structure and properties. Cryst Growth Des 2014;14(5):2654–64
https://doi.org/10.1021/cg5003447
80 Ulrich J, Frohberg P. Problems, potentials and future of industrial crystallization. Front Chem Sci Eng 2013;7(1):1–8
https://doi.org/10.1007/s11705-013-1304-y
81 Ismail SZ, Anderton CL, Copley RC, Price LS, Price SL. Evaluating a crystal energy landscape in the context of industrial polymorph screening. Cryst Growth Des 2013;13(6):2396–406
https://doi.org/10.1021/cg400090r
82 Reilly AM, Cooper RI, Adjiman CS, Bhattacharya S, Boese AD, Brandenburg JG, et al.Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr B Struct Sci Cryst Eng Mater 2016;72(Pt 4 ):439–59
https://doi.org/10.1107/S2052520616007447
83 Price SL, Braun DE, Reutzel-Edens SM. Can computed crystal energy landscapes help understand pharmaceutical solids? Chem Commun 2016;52(44):7065–77
https://doi.org/10.1039/C6CC00721J
84 Myerson AS, Trout BL. Chemistry. Nucleation from solution. Science 2013;341(6148):855–6
https://doi.org/10.1126/science.1243022
85 Dandekar P, Kuvadia ZB, Doherty MF. Engineering crystal morphology. Annu Rev Mater Res 2013;43:359–86
https://doi.org/10.1146/annurev-matsci-071312-121623
86 Shtukenberg AG, Lee SS, Kahr B, Ward MD. Manipulating crystallization with molecular additives. Annu Rev Chem Biomol Eng 2014;5:77–96
https://doi.org/10.1146/annurev-chembioeng-061312-103308
87 Diao Y, Harada T, Myerson AS, Hatton TA, Trout BL. The role of nanopore shape in surface-induced crystallization. Nat Mater 2011;10(11):867–71
https://doi.org/10.1038/nmat3117
88 Diao Y, Myerson AS, Hatton TA, Trout BL. Surface design for controlled crystallization: The role of surface chemistry and nanoscale pores in heterogeneous nucleation. Langmuir 2011;27(9):5324–34
https://doi.org/10.1021/la104351k
89 Diao Y, Whaley KE, Helgeson ME, Woldeyes MA, Doyle PS, Myerson AS, et al.Gel-induced selective crystallization of polymorphs. J Am Chem Soc 2012;134(1):673–84
https://doi.org/10.1021/ja210006t
90 Kacker R, Salvador PM, Sturm GS, Stefanidis GD, Lakerveld R, Nagy ZK, et al.Microwave assisted direct nucleation control for batch crystallization: Crystal size control with reduced batch time. Cryst Growth Des 2016;16(1):440–6
https://doi.org/10.1021/acs.cgd.5b01444
91 Ouyang JB, Wang JK, Huang X, Gao Y, Bao Y, Wang YL, et al.Gel formation and phase transformation during the crystallization of valnemulin hydrogen tartrate. Ind Eng Chem Res 2014;53(43):16859–63
https://doi.org/10.1021/ie5031826
92 Gao ZG, Li L, Bao Y, Wang Z, Hao HX, Yin QX, et al.From jellylike phase to crystal: Effects of solvent on self-assembly of cefotaxime sodium. Ind Eng Chem Res 2016;55(11):3075–83
https://doi.org/10.1021/acs.iecr.5b03678
93 Zhou G, Moment A, Cuff J, Schafer W, Orella C, Sirota E, et al.Process development and control with recent new FBRM, PVM, and IR. Org Process Res Dev 2015;19(1):227–35
https://doi.org/10.1021/op5000978
94 Simone E, Saleemi AN, Nagy ZK. Raman, UV, NIR, and Mid-IR spectroscopy with focused beam reflectance measurement in monitoring polymorphic transformations. Chem Eng Technol 2014;37(8):1305–13
https://doi.org/10.1002/ceat.201400203
95 Simon LL, Pataki H, Marosi G, Meemken F, Hungerbühler K, Baiker A, et al.Assessment of recent process analytical technology (PAT) trends: A multiauthor review. Org Process Res Dev 2015;19(1):3–62
https://doi.org/10.1021/op500261y
96 Simon LL, Merz T, Dubuis S, Lieb A, Hungerbuhler K. In-situ monitoring of pharmaceutical and specialty chemicals crystallization processes using endoscopy—Stroboscopy and multivariate image analysis. Chem Eng Res Des 2012;90(11):1847–55
https://doi.org/10.1016/j.cherd.2012.03.023
97 El Arnaout T, Cullen PJ, Sullivan C. A novel backlight fiber optical probe and image algorithms for real time size-shape analysis during crystallization. Chem Eng Sci 2016;149:42–50
https://doi.org/10.1016/j.ces.2016.04.025
98 Pertig D, Buchfink R, Petersen S, Stelzer T, Ulrich J. Inline analyzing of industrial crystallization processes by an innovative ultrasonic probe technique. Chem Eng Technol 2011;34(4):639–46
https://doi.org/10.1002/ceat.201000558
99 Gherras N, Serris E, Févotte G. Monitoring industrial pharmaceutical crystallization processes using acoustic emission in pure and impure media. Int J Pharm 2012;439(1–2):109–19
https://doi.org/10.1016/j.ijpharm.2012.09.048
100 Nagy ZK, Chew JW, Fujiwara M, Braatz RD. Comparative performance of concentration and temperature controlled batch crystallizations. J Process Contr 2008;18(3–4):399–407
https://doi.org/10.1016/j.jprocont.2007.10.006
101 Duffy D, Barrett M, Glennon B. Novel, calibration-free strategies for supersaturation control in antisolvent crystallization processes. Cryst Growth Des 2013;13(8):3321–32
https://doi.org/10.1021/cg301673g
102 Abu Bakar MR, Nagy ZK, Saleemi AN, Rielly CD. The impact of direct nucleation control on crystal size distribution in pharmaceutical crystallization processes. Cryst Growth Des 2009;9(3):1378–84
https://doi.org/10.1021/cg800595v
103 Nagy ZK, Fujiwara M, Braatz RD. Modelling and control of combined cooling and antisolvent crystallization processes. J Process Contr 2008;18(9):856–64
https://doi.org/10.1016/j.jprocont.2008.06.002
104 Mesbah A, Landlust J, Huesman AE, Kramer HJ, Jansens PJ, Van den Hof PM. A model-based control framework for industrial batch crystallization processes. Chem Eng Res Des 2010;88(9):1223–33
https://doi.org/10.1016/j.cherd.2009.09.010
105 Aamir E, Rielly CD, Nagy ZK. Experimental evaluation of the targeted direct design of temperature trajectories for growth-dominated crystallization processes using an analytical crystal size distribution estimator. Ind Eng Chem Res 2012;51(51):16677–87
https://doi.org/10.1021/ie301610z
106 Nagy ZK. Model based robust control approach for batch crystallization product design. Comput Chem Eng 2009;33(10):1685–91
https://doi.org/10.1016/j.compchemeng.2009.04.012
107 Trifkovic M, Sheikhzadeh M, Rohani S. Kinetics estimation and single and multi-objective optimization of a seeded, anti-solvent, isothermal batch crystallizer. Ind Eng Chem Res 2008;47(5):1586–95
https://doi.org/10.1021/ie071125g
108 Sheikhzadeh M, Trifkovic M, Rohani S. Real-time optimal control of an anti-solvent isothermal semi-batch crystallization process. Chem Eng Sci 2008;63(3):829–39
https://doi.org/10.1016/j.ces.2007.09.049
109 Moldoványi N, Lakatos BG, Szeifert F. Model predictive control of MSMPR crystallizers. J Cryst Growth 2005;275(1–2):e1349–54
https://doi.org/10.1016/j.jcrysgro.2004.11.170
110 Chianese A, Kramer HJ, editors. Industrial crystallization process monitoring and control. Hoboken: John Wiley & Sons, Inc.; 2012
111 Lu J, Li YP, Wang J, Ren GB, Rohani S, Ching CB. Crystallization of an active pharmaceutical ingredient that oils out. Separ Purif Tech 2012;96:1–6
https://doi.org/10.1016/j.seppur.2012.05.015
112 De Albuquerque I, Mazzotti M. Crystallization process design using thermodynamics to avoid oiling out in a mixture of vanillin and water. Cryst Growth Des 2014;14(11):5617–25
https://doi.org/10.1021/cg500904v
113 Takasuga M, Ooshima H. Control of crystal aspect ratio and size by changing solvent composition in oiling out crystallization of an active pharmaceutical ingredient. Cryst Growth Des 2015;15(12):5834–8
https://doi.org/10.1021/acs.cgd.5b01192
114 Yin YH, Gao ZG, Bao Y, Hou BH, Hao HX, Liu D, et al.Gelation phenomenon during antisolvent crystallization of cefotaxime sodium. Ind Eng Chem Res 2013;53(3):1286–92
https://doi.org/10.1021/ie403539d
115 Yang JX, Wang YL, Hao HX, Xie C, Bao Y, Yin QX, et al.Spherulitic crystallization of L-tryptophan: Characterization, growth kinetics, and mechanism. Cryst Growth Des 2015;15(10):5124–32
https://doi.org/10.1021/acs.cgd.5b01089
116 Paroli F. Industrial crystallizers design and control. In: Chianese A, Kramer HJ, editors Industrial crystallization process monitoring and control. Weinheim: Wiley-VCH; 2012. p. 203–24
https://doi.org/10.1002/9783527645206.ch17
117 Sultana M, Jensen KF, inventors; Massachusetts Institute of Technology, assignee. Systems and methods for microfluidic crystallization. United States patent US 20100298602 A1. 2010 Nov 25.
118 Teychené S, Biscans B. Crystal nucleation in a droplet based microfluidic crystallizer. Chem Eng Sci 2012;77:242–8
https://doi.org/10.1016/j.ces.2012.01.036
119 Ildefonso M, Candoni N, Veesler S. A cheap, easy microfluidic crystallization device ensuring universal solvent compatibility. Org Process Res Dev 2012;16(4):556–60
https://doi.org/10.1021/op200291z
120 Ildefonso M, Revalor E, Punniam P, Salmon JB, Candoni N, Veesler S. Nucleation and polymorphism explored via an easy-to-use microfluidic tool. J Cryst Growth 2012;342(1):9–12
https://doi.org/10.1016/j.jcrysgro.2010.11.098
121 Liu WJ, Ma CY, Liu JJ, Zhang Y, Wang XZ. Analytical technology aided optimization and scale-up of impinging jet mixer for reactive crystallization process. AIChE J 2015;61(2):503–17
https://doi.org/10.1002/aic.14662
122 Woo XY, Tan RB, Braatz RD. Modeling and computational fluid dynamics–population balance equation–micromixing simulation of impinging jet crystallizers. Cryst Growth Des 2009;9(1):156–64
https://doi.org/10.1021/cg800095z
123 Liu WJ, Ma CY, Liu JJ, Zhang Y, Wang XZ. Continuous reactive crystallization of pharmaceuticals using impinging jet mixers. AIChE J 2017;63(3):967−74
https://doi.org/10.1002/aic.15438
124 Kaur Bhangu S, Ashokkumar M, Lee J. Ultrasound assisted crystallization of paracetamol: Crystal size distribution and polymorph control. Cryst Growth Des 2016;16(4):1934–41
https://doi.org/10.1021/acs.cgd.5b01470
125 Soare A, Lakerveld R, van Royen J, Zocchi G, Stankiewicz AI, Kramer HJ. Minimization of attrition and breakage in an airlift crystallizer. Ind Eng Chem Res 2012;51(33):10895–909
https://doi.org/10.1021/ie300432w
126 Leonelli C, Mason TJ. Microwave and ultrasonic processing: Now a realistic option for industry. Chem Eng Process: Process Intensification. 2010;49(9):885–900
https://doi.org/10.1016/j.cep.2010.05.006
127 Soare A, Lakerveld R, van Royen J, Zocchi G, Stankiewicz AI, Kramer HJ. Minimization of attrition and breakage in an airlift crystallizer. Ind Eng Chem Res 2012;51(33):10895–909
https://doi.org/10.1021/ie300432w
128 Eder RJ, Radl S, Schmitt E, Innerhofer S, Maier M, Gruber-Woelfler H, et al.Continuously seeded, continuously operated tubular crystallizer for the production of active pharmaceutical ingredients. Cryst Growth Des 2010;10(5):2247–57
https://doi.org/10.1021/cg9015788
129 Lawton S, Steele G, Shering P. Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org Process Res Dev 2009;13(6):1357–63
https://doi.org/10.1021/op900237x
[1] Dejiang Zhang, Shijie Xu, Shichao Du, Jingkang Wang, Junbo Gong. Progress of Pharmaceutical Continuous Crystallization[J]. Engineering, 2017, 3(3): 354-364.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering