Please wait a minute...
投稿  |   English  | 
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 409-415
Research |
Shridhar S. Bagali1(),Bychapur S. Gowrishankar2,Aashis S. Roy3()
1. Department of Chemical Engineering, Siddaganga Institute of Technology, Tumkur, Karnataka 572 103, India
2. Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka 572 103, India
3. Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
全文: PDF(1832 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息

香蕉假茎粉末等天然吸附剂对于去除废水中的重金属元素具有非常重要的作用。现有的去除重金属元素的常规方法难以满足水资源循环和化学工业的需求。本文论证了利用天然物质处理废水的可能性。利用环境扫描电子显微镜(ESEM) 和傅里叶变换红外(FTIR) 光谱学分析方法,研究了香蕉假茎粉末吸附铅离子前后的变化。实验采用批处理方法研究了水溶液中铅离子去除的效果。通过改变初始pH 值、吸附剂用量、初始铅离子浓度、吸附时间等参数,研究了吸附动力学的影响。结果表明,在水溶液pH 值为5.5 时,香蕉假茎粉末达到零电荷点。采用吸附等温线和动力学模型分析实验数据,采用朗缪尔吸附等温式拟合铅离子在香蕉假茎粉末表面的吸附作用。实验表明,香蕉假茎粉末对铅离子的吸附量为34.21mg·g−1,与拟二级动力学模型相匹配。此外,采用响应面分析法确定了铅离子吸附的最佳条件,铅离子的去除率高达89%。

关键词 香蕉假茎等温线吸附响应面分析法    

Natural adsorbents such as banana pseudostem can play a vital role in the removal of heavy metal elements from wastewater. Major water resources and chemical industries have been encountering difficulties in removing heavy metal elements using available conventional methods. This work demonstrates the potential to treat various effluents utilizing natural materials. A characterization of banana pseudostem powder was performed using environmental scanning electron microscopy (ESEM) and Fourier-transform infrared (FTIR) spectroscopy before and after the adsorption of lead(II). Experiments were carried out using a batch process for the removal of lead(II) from an aqueous solution. The effects of the adsorption kinetics were studied by altering various parameters such as initial pH, adsorbent dosage, initial lead ion concentration, and contact time. The results show that the point of zero charge (PZC) for the banana pseudostem powder was achieved at a pH of 5.5. The experimental data were analyzed using isotherm and kinetic models. The adsorption of lead(II) onto banana pseudostem powder was fitted using the Langmuir adsorption isotherm. The adsorption capacity was found to be 34.21 mg·g−1, and the pseudo second-order kinetic model showed the best fit. The optimum conditions were found using response surface methodology. The maximum removal was found to be 89%.

Keywords Banana pseudostem      Lead      Isotherm      Adsorption      Response surface methodology     
通讯作者: Shridhar S. Bagali,Aashis S. Roy     E-mail:;
最新录用日期:    发布日期: 2017-06-30
Shridhar S. Bagali
Bychapur S. Gowrishankar
Aashis S. Roy
Shridhar S. Bagali,Bychapur S. Gowrishankar,Aashis S. Roy. Optimization, Kinetics, and Equilibrium Studies on the Removal of Lead(II) from an Aqueous Solution Using Banana Pseudostem as an Adsorbent[J]. Engineering, 2017, 3(3): 409-415.
网址:     OR
Variable Parameter Level
α −1 0 +1 +α
x1 Initial pH 1.29552 3 5.5 8 9.70448
x2 Initial lead ion concentration (mg·L−1) 12.9552 30 55 80 97.0448
x3 Adsorbent dosage (g·L−1) 0.318207 1 2 3 3.68179
Tab.1  Experimental range and levels of initial pH, initial lead ion concentration, and adsorbent dosage in CCD.
No. Initial pH Initial lead ion concentration (mg·L−1) Adsorbent dosage (g·L−1) Lead nitrate removal efficiency (%)
Experimental Predicted
1 3.0 30.00 1.00 63 66
2 8.0 30.00 1.00 71 67
3 3.0 80.00 1.00 80 75
4 8.0 80.00 1.00 58 63
5 3.0 30.00 3.00 79 72
6 8.0 30.00 3.00 72 75
7 3.0 80.00 3.00 72 74
8 8.0 80.00 3.00 70 65
9 1.3 55.00 2.00 71 73
10 9.7 55.00 2.00 67 65
11 5.5 12.96 2.00 72 72
12 5.5 97.04 2.00 71 71
13 5.5 55.00 0.32 71 69
14 5.5 55.00 3.68 74 76
15 5.5 55.00 2.00 90 88
16 5.5 55.00 2.00 89 88
17 5.5 55.00 2.00 89 88
18 5.5 55.00 2.00 87 88
19 5.5 55.00 2.00 89 88
20 5.5 55.00 2.00 89 88
Tab.2  Set of 20 experiments with combinations of three parameters.
Fig.1  ESEM photographs of banana pseudostem powder (a) before and (b) after adsorption of lead(II).
Fig.2  FTIR spectra of banana pseudostem powder (a) before and (b) after adsorption of lead(II).
Fig.3  Effect of initial pH on adsorption.
Fig.4  Effect of adsorbent dosage on adsorption.
Fig.5  Effect of initial lead ion concentration and contact time on adsorption.
Fig.6  Langmuir adsorption isotherm of lead ion in aqueous solution.
Fig.7  Freundlich adsorption isotherm of lead ion in aqueous solution.
Fig.8  Pseudo first-order kinetic model for lead ion adsorption.
Fig.9  Pseudo second-order kinetic model for lead ion adsorption.
Model Initial lead ion concentrations (ppm)
10 20 30 40 50
Pseudo first-order
K1 (min−1) 0.039 0.028 0.025 0.022 0.017
qe (mg·g−1) 6.05 11.81 15.03 18.00 19.78
R2 0.8981 0.9751 0.9772 0.8931 0.8336
Pseudo second-order
K2 ((g·mg−1)·min−1) 0.0090 0.0030 0.0020 0.0013 0.0011
qe (mg·g−1) 9.5 18.0 25.0 30.0 33.0
R2 0.9969 0.9962 0.9938 0.9729 0.9571
Tab.3  Parameters of the kinetic models.
Source Sum of squares Degree of freedom Mean square F P
Model 1599.92 9 177.77 9.92 0.0007
Residual 179.28 10 17.93
Total 1779.20 19
Tab.4  Analysis-of-variance results.
Fig.10  Surface plots for the effect of different parameters on lead nitrate removal efficiency. (a) Initial lead ion concentration and initial pH; (b) adsorbent dosage and initial pH; (c) adsorbent dosage and initial lead ion concentration.
1 Ekebafe LO, Ekebafe MO, Erhuaga GO, Oboigba FM. Effect of reaction conditions on the uptake of selected heavy metals from aqueous media using composite from renewable materials. Am J Pol Sci 2012;2(4):67–72
2 Regmi P, Garcia Moscoso JL, Kumar S, Cao X, Mao J, Schafran G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage 2012;109:61–9
3 Nguyen TAH, Ngo HH, Guo WS, Zhang J, Liang S, Yue QY, et al.Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater. Bioresour Technol 2013;148:574–85
4 Bhattacharyya KG, Gupta SS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv Colloid Interface Sci 2008;140(2):114–31
5 Nadeema M, Shabbira M, Abdullahb MA, Shahc SS, McKay G. Sorption of cadmium from aqueous solution by surfactant-modified carbon adsorbents. Chem Eng J 2009;148(2–3):365–70
6 Karnitz O Jr, Gurgel LV, de Melo JC, Botaro VR, Melo TM, de Freitas Gil RP, et al.Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour Technol 2007;98(6):1291–7
7 Miretzky P, Cirelli AF. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. J Hazard Mater 2010;180(1–3):1–19
8 Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, et al.Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresour Technol 2011;102(10):6273–8
9 Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv 2009;27(2):195–226
10 Onundi YB, Mamun AA, Khatib MF, Ahmed YM. Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int J Environ Sci Technol 2010;7(4):751–8
11 Mohan D, Sarswat A, Ok YS, Pittman CU Jr. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour Technol 2014;160:191–202
12 Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. J Environ Manage 2011;92(3):407–18
13 Mussatto SI, Fernandes M, Rocha GJ, Orfão JJ, Teixeira JA, Roberto IC. Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresour Technol 2010;101(7):2450–7
14 Mohan D, Pittman CU Jr. Arsenic removal from water/wastewater using adsorbents—A critical review. J Hazard Mater 2007;142(1–2):1–53
15 Imyim A, Prapalimrungsi E. Humic acids removal from water by aminopropyl functionalized rice husk ash. J Hazard Mater 2010;184(1–3):775–81
16 Gregorio C. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 2005;30(1):38–70
17 Ofomaja AE, Ho YS. Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust. Bioresour Technol 2008;99(13):5411–7
18 Rabindra PD, Kedar NG, Katsutoshi I. Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy 2005;79(3–4):182–90.
19 Pereira ALS, do Nascimento DM, Souza MM, Cassales AR, Morais JPS, Paula RCM, et al.Banana (Musa sp. cv. Pacovan) pseudostem fibers are composed of varying lignocellulosic composition throughout the diamete r. BioResources 2014;9(4):7749–63
20 Suresh Jeyakumar RP, Chandrasekaran V. Adsorption of lead (II) ions by activated carbons prepared from marine green algae: Equilibrium and kinetics studies. Int J Indust Chem 2014;5:2
21 Ogunleye OO, Ajala MA, Agarry SE. Evaluation of biosorptive capacity of banana (Musa paradisiaca) stalk for lead (II) removal from aqueous solution. J Environ Prot (Irvine Calif) 2014;5(15):1451–65
[1] Yican Wu. Design and R&D Progress of China Lead-Based Reactor for ADS Research Facility[J]. Engineering, 2016, 2(1): 124-131.
Full text



国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社