Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (3) : 290-298     https://doi.org/10.1016/J.ENG.2017.03.026
Research |
面向绿色过程的膜工程
Francesca Macedonio1,2(),Enrico Drioli1,2,3,4
1. Institute on Membrane Technology (ITM–CNR), University of Calabria, Rende 87036, Italy
2. Department of Environmental and Chemical Engineering, University of Calabria, Rende 87036, Italy
3. Department of Energy Engineering, College of Engineering, Hanyang University, Seoul 133–791, Korea
4. Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
全文: PDF(693 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 

绿色过程工程是实现工业可持续发展的一个重要途径。基于过程强化原则,它涉及新设备和新过程方法,期望能够给化学及其他生产领域和过程领域带来根本进步,比如降低生产成本、减小设备尺寸、降低能耗、减少废物产生及改进远程控制、信息流控制和过程弹性等。膜技术为过程强化原则做出了很大的贡献,在过去这些年,其潜力获得了广泛的认可。本文综合分析了膜技术在水处理、能源生产和天然材料提取等工业领域的应用和前景,重点强调了创新膜集成单元的协同使用存在的机遇,介绍了集成膜系统在海水淡化与原材料生产耦合工艺中的一个应用案例。本文将说明膜工程在实现“零排放”“原材料全利用”和“低能耗”等目标中的作用。

关键词 膜工程能源/ 水/ 原材料生产超越反渗透法海水淡化    
Abstract

Green process engineering, which is based on the principles of the process intensi?cation strategy, can provide an important contribution toward achieving industrial sustainable development. Green process engineering refers to innovative equipment and process methods that are expected to bring about substantial improvements in chemical and any other manufacturing and processing aspects. It includes decreasing production costs, equipment size, energy consumption, and waste generation, and improving remote control, information ?uxes, and process ?exibility. Membrane-based technology assists in the pursuit of these principles, and the potential of membrane operations has been widely recognized in the last few years. This work starts by presenting an overview of the membrane operations that are utilized in water treatment and in the production of energy and raw materials. Next, it describes the potential advantages of innovative membrane-based integrated systems. A case study on an integrated membrane system (IMS) for seawater desalination coupled with raw materials production is presented. The aim of this work is to show how membrane systems can contribute to the realization of the goals of zero liquid discharge (ZLD), total raw materials utilization, and low energy consumption.

Keywords Membrane engineering      Energy/water/raw materials production      Beyond seawater reverse osmosis     
基金资助: 
通讯作者: Francesca Macedonio     E-mail: f.macedonio@itm.cnr.it, francesca.macedonio@unical.it
最新录用日期:    发布日期: 2017-06-30
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Francesca Macedonio
Enrico Drioli
引用本文:   
Francesca Macedonio,Enrico Drioli. Membrane Engineering for Green Process Engineering[J]. Engineering, 2017, 3(3): 290-298.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.026     OR     http://engineering.org.cn/EN/Y2017/V3/I3/290
Fig.1  World energy consumption, 1990—2040. The unit for the y-axis is quadrillion Btu (1 Btu= 1.05506 × 103 J). OECD refers to all members of the Organization for Economic Cooperation and Development, and non-OECD refers to nations outside of the Organization for Economic Cooperation and Development.<FootNote>

US Energy Information Administration, International Energy Outlook, 2016. May 11, 2016. Report Number: DOE/EIA-0484(2016). Available online: https://www.eia.gov/outlooks/ieo/world.cfm.

</FootNote>
Fig.2  Time evolution of membrane vs. thermal desalination technologies. GLOBAL: global situation; MENA: situation in Middle East and North African countries; GCC: situation in Gulf Cooperation Council countries.
Total capacity (m3·d1) Date commissioned Recovery (%) Energy consumption (kWh·m−3) Feed-water TDS (mg·L1)
Carlsbad Desalination Plant (San Diego County, US) 204?390 2015 50 <2.3 34?500
Al Ghubrah Independent Water Project (Oman) 191?000 2015 38 3.2–4 45?000
Barka IWPP expansion (Oman) 56?780 7.5 MIGD in Oct 2015
10 MIGD in Nov 2015
12.5 MIGD in Feb 2016
40 4.2 43?000
Tab.1  Characteristics of recently constructed large-scale SWRO desalination plants.
Desalination technologies GHG emissions
Reverse osmosis 1.4–3.6
Multi-effect distillation with thermo-vapor compression 8–16
Multistage flash 10–20
Tab.2  Representative direct GHG footprint in kgCO2·m−3 of fresh water [10,11].
Characteristics Parameter
Feed (seawater) flowrate (m3·d−1) 4.32 × 105
Feed-water TDS (mg·L−1) 34 500
RO recovery (%) 50
RO operating pressure (MPa) 5.5
RO membrane module DOW FILMTEC™ SW30HRLE-400
RO salt rejection (%) 99.6
Pre-treatment Filters and MF
Tab.3  Characteristics of the studied SWRO desalination plant.
Fig.3  Flowsheet of the analyzed SWRO desalination system.
Product characteristics Value
Plant recovery factor (%) 93.6
Fresh water concentration (g·L−1) 0.07
Brine concentration (g·L−1) 968
Electrical energy consumption before introducing MCr (kWh·m−3) 3.5
Total energy consumption (kWh·m−3) 27.3
CaCO3 flowrate (kg·m−3 seawater) 0.9224
NaCl (kg·m−3 seawater) 22.9
MgSO4·7H2O (kg·m−3 seawater) 1.31
LiCl (kg·m−3 seawater) 0.00098
Tab.4  Product characteristics for the analyzed flowsheets.
Items Value
Total water cost (with revenue from byproduct sale) a 0.66–0.85 $·m−3 (the lowest value is for available waste heat)
Revenue from CaCO3 sale 0.057 $·m−3 seawater
Revenue from NaCl sale 0.687 $·m−3 seawater
Revenue from MgSO4·7H2O sale 0.745 $·m−3 seawater
Revenue from LiCl sale 0.020 $·m−3 seawater
Tab.5  Summary of cost data.
Fig.4  Scheme of the membrane condenser process for the recovery of evaporated “waste” water from a gaseous stream. (Reprinted with permission from Ref. [57]. Copyright 2013, American Chemical Society)
1 Global Water Intelligence and International Desalination Association. IDA desalination yearbook 2016−2017 . Oxford: Media Analytics Ltd.; 2016.
2 Lee KP, Arnot TC, Mattia D.A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J Membrane Sci 2011;370(1–2):1–22
https://doi.org/10.1016/j.memsci.2010.12.036
3 Gabriel S, Baschwitz A, Mathonnière G, Fizaine F, Eleouet T. Building future nuclear power fleets: The available uranium resources constraint. Resour Policy 2013;38(4):458–69
https://doi.org/10.1016/j.resourpol.2013.06.008
4 Macedonio F, Ali A, Poerio T, El-Sayed E, Drioli E, Abdel-Jawad M. Direct contact membrane distillation for treatment of oilfield produced water. Sep Purif Technol 2014;126:69–81
https://doi.org/10.1016/j.seppur.2014.02.004
5 Gude VG. Desalination and sustainability—An appraisal and current perspective. Water Res 2016;89:87–106
https://doi.org/10.1016/j.watres.2015.11.012
6 Morillo J, Usero J, Rosado D, El Bakouri H, Riaza A, Bernaola FJ. Comparative study of brine management technologies for desalination plants. Desalination 2014;336:32–49
https://doi.org/10.1016/j.desal.2013.12.038
7 von Medeazza GLM. “Direct” and socially-induced environmental impacts of desalination. Desalination 2005;185(1–3):57–70
https://doi.org/10.1016/j.desal.2005.03.071
8 Fritzmann C, Löwenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination. Desalination 2007;216(1–3):1–76
https://doi.org/10.1016/j.desal.2006.12.009
9 Lienhard JH, Thiel GP, Warsinger DM, Banchik LD. Low carbon desalination: Status and research, development, and demonstration needs, report of a workshop conducted at the Massachusetts Institute of Technology in association with the Global Clean Water Desalination Alliance. Cambridge: MIT Abdul Latif Jameel World Water and Food Security Lab; 2016 Nov.
10 Johnson J, Busch M. Engineering aspects of reverse osmosis module design. Desalin Water Treat 2010;15(1–3):236–48
https://doi.org/10.5004/dwt.2010.1756
11 Zhu A, Rahardianto A, Christofides PD, Cohen Y. Reverse osmosis desalination with high permeability membranes—Cost optimization and research needs. Desalin Water Treat 2010;15(1–3):256–66
https://doi.org/10.5004/dwt.2010.1763
12 Elimelech M, Phillip WA. The future of seawater desalination: Energy, technology, and the environment. Science 2011;333(6043):712–7
https://doi.org/10.1126/science.1200488
13 Amy G, Ghaffour N, Li Z, Francis L, Linares RV, Missimer T, et al.. Membrane-based seawater desalination: Present and future prospects. Desalination 2017;401:16–21
https://doi.org/10.1016/j.desal.2016.10.002
14 Voutchkov N. Considerations for selection of seawater filtration pretreatment system. Desalination 2010;261(3):354–64
https://doi.org/10.1016/j.desal.2010.07.002
15 Villacorte LO, Tabatabai SAA, Anderson DM, Amy GL, Schippers JC, Kennedy MD. Seawater reverse osmosis desalination and (harmful) algal blooms. Desalination 2015;360:61–80
https://doi.org/10.1016/j.desal.2015.01.007
16 Macedonio F, Drioli E, Gusev AA, Bardow A, Semiat R, Kurihara M. Efficient technologies for worldwide clean water supply. Chem Eng Process 2012;51:2–17
https://doi.org/10.1016/j.cep.2011.09.011
17 Mathioulakis E, Belessiotis V, Delyannis E. Desalination by using alternative energy: Review and state-of-the-art. Desalination 2007;203(1–3):346–65
https://doi.org/10.1016/j.desal.2006.03.531
18 Khayet M, Mengual JI, Matsuura T. Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation. J Membrane Sci 2005;252(1–2):101–13
https://doi.org/10.1016/j.memsci.2004.11.022
19 Hassankiadeh NT, Cui Z, Kim JH, Shin DW, Sanguineti A, Arcella V, et al. .PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: Effect of PVDF molecular weight. J Membrane Sci 2014;471:237–46
https://doi.org/10.1016/j.memsci.2014.07.060
20 El-Bourawi MS, Ding Z, Ma R, Khayet M. A framework for better understanding membrane distillation separation process. J Membrane Sci 2006;285(1–2):4–29
https://doi.org/10.1016/j.memsci.2006.08.002
21 Khayet M, Matsuura T, Mengual JI. Porous hydrophobic/hydrophilic composite membranes: Estimation of the hydrophobic-layer thickness. J Membrane Sci 2005;266(1–2):68–79
https://doi.org/10.1016/j.memsci.2005.05.012
22 Jin Z, Yang D, Zhang S, Jian X. Hydrophobic modification of poly (phthalazinone ether sulfone ketone) hollow fiber membrane for vacuum membrane distillation. J Membrane Sci 2008;310(1–2):20–7
https://doi.org/10.1016/j.memsci.2007.10.021
23 Tong D, Wang X, Ali M, Lan CQ, Wang Y, Drioli E, et al.. Preparation of Hyflon AD60/PVDF composite hollow fiber membranes for vacuum membrane distillation. Sep Purif Technol 2016;157:1–8
https://doi.org/10.1016/j.seppur.2015.11.026
24 McCutcheon JR, McGinnis RL, Elimelech M. Desalination by a novel ammonia-carbon dioxide forward osmosis process: Influence of draw and feed solution concentrations on process performance. J Membrane Sci 2006;278(1–2):114–23
https://doi.org/10.1016/j.memsci.2005.10.048
25 Gray GT, McCutcheon JR, Elimelech M. Internal concentration polarization in forward osmosis: Role of membrane orientation. Desalination 2006;197(1–3):1–8
https://doi.org/10.1016/j.desal.2006.02.003
26 Cath TY, Childress AE, Elimelech M. Forward osmosis: Principles, applications, and recent developments. J Membrane Sci 2006;281(1–2):70–87
https://doi.org/10.1016/j.memsci.2006.05.048
27 Zhang S, Wang K, Chung TS, Chen H, Jean YC, Amy G. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. J Membrane Sci 2010;360(1–2):522–35
https://doi.org/10.1016/j.memsci.2010.05.056
28 Chung TS, Luo L, Wan C, Cui Y, Amy G. What is next for forward osmosis (FO) and pressure retarded osmosis (PRO). Sep Purif Technol 2015;156(Part 2):856–60
https://doi.org/10.1016/j.seppur.2015.10.063
29 Sukitpaneenit P, Chung TS. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environ Sci Technol 2012;46(13):7358–65
https://doi.org/10.1021/es301559z
30 Zhang S, Chung TS. Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density. Environ Sci Technol 2013;47(17):10085–92
https://doi.org/10.1021/es402690v
31 Sarp S, Li Z, Saththasivam J. Pressure retarded osmosis (PRO): Past experiences, current developments, and future prospects. Desalination 2016;389:2–14
https://doi.org/10.1016/j.desal.2015.12.008
32 Kurihara, M, Sakai H, Tanioka A, Tomioka H. Role of pressure retarded osmosis (PRO) in the mega-ton project. Desalin Water Treat 2016;57(55):26518–28
https://doi.org/10.1080/19443994.2016.1168582
33 Wan C, Chung TS. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed. J Membrane Sci 2015;479:148–58
https://doi.org/10.1016/j.memsci.2014.12.036
34 Fernández-Torres MJ, Randall DG, Melamu R, von Blottnitz H. A comparative life cycle assessment of eutectic freeze crystallization and evaporative crystallization for the treatment of saline wastewater. Desalination 2012;306:17–23
https://doi.org/10.1016/j.desal.2012.08.022
35 Randall DG, Nathoo J, Lewis AE. A case study for treating a reverse osmosis brine using eutectic freeze crystallization—Approaching a zero waste process. Desalination 2011;266(1–3):256–62
https://doi.org/10.1016/j.desal.2010.08.034
36 Stover RL. Industrial and brackish water treatment with closed circuit reverse osmosis. Desalin Water Treat 2013; 51(4–6):1124–30
https://doi.org/10.1080/19443994.2012.699341
37 Qiu T, Davies PA. Comparison of configurations for high-recovery inland desalination systems. Water 2012;4(3):690–706
https://doi.org/10.3390/w4030690
38 Efraty A, Barak RN, Gal Z. Closed circuit desalination—A new low energy high recovery technology without energy recovery. Desalin Water Treat 2011; 31(1–3):95–101
https://doi.org/10.5004/dwt.2011.2402
39 Juby G, Zacheis A, Shih W, Ravishanker P, Mortazavi B, Nusser MD. Evaluation and selection of available processes for a zero-liquid discharge system for the Perris, California, ground water basin. Desalination and water purification research and development program report. Denver: US Department of the Interior, Bureau of Reclamation; 2008 Apr. Report No.: 149.
40 Subramani A, Jacangelo JG. Treatment technologies for reverse osmosis concentrate volume minimization: A review. Sep Purif Technol 2014;122:472–89
https://doi.org/10.1016/j.seppur.2013.12.004
41 Drewes JE, Cath TY, Xu P, Graydon J, Veil J, Snyder S. An integrated framework for treatment and management of produc ed water. In: RPSEA Unconventional Gas Project Review Meeting; 2009 Apr 14–15; Golden, Colorado, USA; 2009.
42 Sethi S, Walker S, Drewes J, Xu P. Existing and emerging concentrate minimization and disposal practices for membrane systems. Fla Water Resour J 2006;58:38–48.
43 Curcio E, Criscuoli A, Drioli E. Membrane crystallizers. Ind Eng Chem Res 2001;40(12):2679–84
https://doi.org/10.1021/ie000906d
44 Di Profio G, Tucci S, Curcio E, Drioli E. Selective glycine polymorph crystallization by using microporous membranes. Cryst Growth Des 2007;7(3):526–30
https://doi.org/10.1021/cg0605990
45 Drioli E, Fontananova E. Membrane materials for addressing energy and environmental challenges. Annu Rev Chem Biomol Eng 2012;3:395–420
https://doi.org/10.1146/annurev-chembioeng-062011-081027
46 Drioli E, Curcio E, Criscuoli A, Di Profio G. Integrated system for recovery of CaCO3, NaCl and MgSO4·7H2O from nanofiltration retentate. J Membrane Sci 2004;239(1):27–38
https://doi.org/10.1016/j.memsci.2003.09.028
47 Di Profio G, Tucci S, Curcio E, Drioli E. Selective glycine polymorph crystallization by using microporous membranes. Cryst Growth Des 2007;7(3): 526–30
https://doi.org/10.1021/cg0605990
48 Drioli E, Di Profio G, Curcio E. Progresses in membrane crystallization. Curr Opin Chem Eng 2012;1(2):178–82
https://doi.org/10.1016/j.coche.2012.03.005
49 Macedonio F, Curcio E, Drioli E. Integrated membrane systems for seawater desalination: Energetic and exergetic analysis, economic evaluation, experimental study. Desalination 2007;203(1–3):260–76
https://doi.org/10.1016/j.desal.2006.02.021
50 Macedonio F, Drioli E. Pressure-driven membrane operations and membrane distillation technology integration for water purification. Desalination 2008;223(1–3):396–409
https://doi.org/10.1016/j.desal.2007.01.200
51 Macedonio F, Drioli E, Curcio E, Di Profio G. Experimental and economical evaluation of a membrane crystallizer plant. Desalin Water Treat 2009;9(1–3):49–53
https://doi.org/10.5004/dwt.2009.751
52 Macedonio F, Drioli E. Hydrophobic membranes for salts recovery from desalination plants. Desalin Water Treat 2010;18(1–3): 224–34
https://doi.org/10.5004/dwt.2010.1775
53 Tun CM, Fane AG, Matheickal JT, Sheikholeslami R. Membrane distillation crystallization of concentrated salts—Flux and crystal formation. J Membrane Sci 2005;257(1–2):144–55
https://doi.org/10.1016/j.memsci.2004.09.051
54 Drioli E, Macedonio F. Integrated membrane systems for desalination. In: Peinemann KV, Nunes SP, editors Membrane technology: Membranes for water treatment, volume 4. Hoboken: John Wiley & Sons, Inc.; 2010. p. 93–146
https://doi.org/10.1002/9783527631407.ch4
55 Drioli E, Curcio E, Di Profio G, Macedonio F, Criscuoli A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination—Energy, exergy and costs analysis. Chem Eng Res Des 2006;84(3):209–20
https://doi.org/10.1205/cherd.05171
56 Judd S, Jefferson B. Membrane for industrial wastewater recovery and re-use. 1st ed. Oxford: Elsevier Science Ltd.; 2003.
57 Macedonio F, Brunetti A, Barbieri G, Drioli E. Membrane condenser as a new technology for water recovery from humidified “waste” gaseous streams. Ind Eng Chem Res 2013;52(3):1160–7
https://doi.org/10.1021/ie203031b
58 Michels B, Adamczyk F, Koch J. Retrofit of a flue gas heat recovery system at the Mehrum power plant. An example of power plant lifetime evaluation in practice. In: Proceedings of the POWER-GEN Europe Conference; 2004 May25–27; Barcelona, Spain; 2004. p. 10–1.
59 Folkedahl BC, Weber GF, Collings ME. Water extraction from coal-fired power plant flue gas. Final report. Grand Forks: University of North Dakota; 2006 Jun. Cooperative Agreement No.: DE-FC26-03NT41907.
60 Ito A. Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane. J Membrane Sci 2000;175(1):35–42
https://doi.org/10.1016/S0376-7388(00)00404-X
61 Sijbesma H, Nymeijer K, van Marwijk R, Heijboer R, Potreck J, Wessling M. Flue gas dehydration using polymer membranes. J Membrane Sci 2008;313(1–2):263–76
https://doi.org/10.1016/j.memsci.2008.01.024
62 Zhang L, Zhu D, Deng X, Hua B. Thermodynamic modeling of a novel air dehumidification system. Energ Buildings 2005;37(3):279–86
https://doi.org/10.1016/j.enbuild.2004.06.019
63 Drioli E, Santoro S, Simone S, Barbieri G, Brunetti A, Macedonio F,et al. .ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. React Funct Polym 2014;79:1–7
https://doi.org/10.1016/j.reactfunctpolym.2014.03.003
64 Macedonio F, Cersosimo M, Brunetti A, Barbieri G, Drioli E. Water recovery from humidified waste gas streams: Quality control using membrane condenser technology. Chem Eng Process 2014;86:196–203
https://doi.org/10.1016/j.cep.2014.08.008
65 Brunetti A, Santoro S, Macedonio F, Figoli A, Drioli E, Barbieri G. Waste gaseous streams: From environmental issue to source of water by using membrane condensers. Clean–Soil Air Water 2014;42(8):1145–53
https://doi.org/10.1002/clen.201300104
66 Macedonio F, Brunetti A, Barbieri G, Drioli E. Membrane condenser configurations for water recovery from waste gases. Sep Purif Technol 2017;181:60–8
https://doi.org/10.1016/j.seppur.2017.03.009
67 Drioli E, Criscuoli A, Macedonio F. Membrane-based desalination: An integrated approach. London: IWA Publishig; 2011.
68 Kurihara M, Hanakawa M. Mega-ton water system: Japanese national research and development project on seawater desalination and wastewater reclamation. Desalination 2013;308:131–7
https://doi.org/10.1016/j.desal.2012.07.038
69 Kim S, Cho D, Lee MS, Oh BS, Kim JH, Kim IS. SEAHERO R&D program and key strategies for the scale-up of a seawater reverse osmosis (SWRO) system. Desalination 2009;238(1–3):1–9
https://doi.org/10.1016/j.desal.2008.01.029
70 Kim S, Oh BS, Hwang MH, Hong S, Kim JH, Lee S, et al..An ambitious step to the future desalination technology: SEAHERO R&D program (2007–2012). Appl Water Sci 2011;1(1):11–7
https://doi.org/10.1007/s13201-011-0003-4
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343-351.
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336-342.
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421-429.
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300-.
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306-308.
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299-.
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381-391.
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309-310.
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352-360.
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371-380.
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392-397.
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311-320.
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398-405.
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330-335.
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering