Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (5) : 588-595     https://doi.org/10.1016/J.ENG.2017.04.009
Research |
集成化智能制造——前景与推动力
Yubao Chen()
Department of Industrial and Manufacturing Systems Engineering, University of Michigan–Dearborn, Dearborn, MI 48128, USA
全文: PDF(1484 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 随着市场竞争的日益激烈和技术的进步,越来越多的国家把先进制造技术摆在促进经济增长的首要位置。德国于2013年公布“工业4.0”战略。美国政府于2011年推出“先进制造业伙伴关系”(AMP)计划,又于2014年推出“国家制造业创新网络”(NNMI)计划。最近,美国正式推出“美国制造业”计划,该计划通过加强工业界、学术界和政府伙伴间的密切合作,进一步有效“利用现有资源……培育制造业创新能力并加速商业化进程”。2015年,中国政府正式发布《中国制造2025》这一面向制造业的十年规划和路线图。在所有的国家计划中,核心技术的发展都集中应用于先进制造系统领域。一种新的制造模式正在兴起,其具备两个独特的特征:集成化制造和智能制造。这一趋势符合工业革命的发展进程,而在此进程中人们不断追求更高效率的生产系统。为此,人们为新的制造模式划定了10项主要技术。本文介绍了集成化智能制造(i2M)系统的基本原理和需求,同时也介绍了来自不同领域的相关技术。值得一提的是,本文还讨论了物联网和服务(IoTS)、信息物理系统(CPS)和云计算等关键的技术推动力量。通用电气(GE)的Predix和美国参数技术公司(PTC)的ThingWorx等商用平台的应用所面临的挑战也得到了有效应对。
关键词 集成化制造智能制造云计算信息物理系统物联网工业互联网预测分析制造平台    
Abstract

With ever-increasing market competition and advances in technology, more and more countries are prioritizing advanced manufacturing technology as their top priority for economic growth. Germany announced the Industry 4.0 strategy in 2013. The US government launched the Advanced Manufacturing Partnership (AMP) in 2011 and the National Network for Manufacturing Innovation (NNMI) in 2014. Most recently, the Manufacturing USA initiative was officially rolled out to further “leverage existing resources… to nurture manufacturing innovation and accelerate commercialization” by fostering close collaboration between industry, academia, and government partners. In 2015, the Chinese government officially published a 10-year plan and roadmap toward manufacturing: Made in China 2025. In all these national initiatives, the core technology development and implementation is in the area of advanced manufacturing systems. A new manufacturing paradigm is emerging, which can be characterized by two unique features: integrated manufacturing and intelligent manufacturing. This trend is in line with the progress of industrial revolutions, in which higher efficiency in production systems is being continuously pursued. To this end, 10 major technologies can be identified for the new manufacturing paradigm. This paper describes the rationales and needs for integrated and intelligent manufacturing (i2M) systems. Related technologies from different fields are also described. In particular, key technological enablers, such as the Internet of Things and Services (IoTS), cyber-physical systems (CPSs), and cloud computing are discussed. Challenges are addressed with applications that are based on commercially available platforms such as General Electric (GE)’s Predix and PTC’s ThingWorx.

Keywords Integrated manufacturing      Intelligent manufacturing      Cloud computing      Cyber-physical system      Internet of Things      Industrial Internet      Predictive analytics      Manufacturing platform     
基金资助: 
在线预览日期:    发布日期: 2017-11-08
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Yubao Chen
引用本文:   
Yubao Chen. Integrated and Intelligent Manufacturing: Perspectives and Enablers[J]. Engineering, 2017, 3(5): 588-595.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.04.009     OR     http://engineering.org.cn/EN/Y2017/V3/I5/588
Fig.1  The progress and characteristics of industrial revolutions. CNC: computer numerical controller; PLC: programmable logic controller; ICT: information and communications technology; CPS: cyber-physical system.
Fig.2  The new trend in manufacturing systems. MES: manufacturing execution system.
Fig.3  Ten major technologies for i2M.
Fig.4  The Predix platform [9]. CPU: central processing unit.
Fig.5  The ThingWorx platform [12].
Fig.6  The Azure ML workflow [14]. SQL: structured query language; BI: business intelligence.
1 Kagermann H, Wahlster W, Helbig J; National Academy of Science and Engineering. Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Final report of the Industrie 4.0 Working Group. Munich: National Academy of Science and Engineering; 2013 Apr.
2 Revitalize American Manufacturing and Innovation Act of 2014, H.R. 2996, 113th Cong. (2014).
3 National Economic Council, Office of Science and Technology Policy.A strategy for American innovation.Washington, DC: The White House; 2015 Oct.
4 Lee XE. Made in China 2025: A new era for Chinese manufacturing China. In: CKGSB Knowledge [Internet]. Beijing: Cheung Kong Graduate School of Business; 2015 Sep 2 [cited 2016 Nov 2]. Available from: http://knowledge.ckgsb.edu.cn/2015/09/02/technology/made-in-china-2025-a-new-era-for-chinese-manufacturing/.
5 Zhang L, Luo Y, Tao F, Li BH, Ren L, Zhang X, et al.. Cloud manufacturing: A new manufacturing paradigm. Enterp Inf Syst-UK 2014;8(2):167–87
https://doi.org/10.1080/17517575.2012.683812
6 Evans D. The Internet of Things: How the next evolution of the Internet is changing everything. White paper. San Jose: Cisco Systems, Inc.; 2011.
7 Lee J, Bagheri B, Kao HA. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf Lett 2015;3:18–23
https://doi.org/10.1016/j.mfglet.2014.12.001
8 GE Digital. Predix: The industrial internet platform, white paper.Boston: General Electric Company; 2016.
9 Babcock C. GE Predix Cloud: Industrial support for machine data. In: InformationWeek [Internet]. San Francisco: UBM Tech; 2015 Aug 6 [cited 2016 Nov 2]. Available from: http://www.informationweek.com/cloud/platform-as-a-service/ge-predix-cloud-industrial-support-for-machine-data/d/d-id/1321628.
10 Schmidt M. 5 emerging technology trends for manufacturers in 2017. In: Manufacturing News [Internet].Prospect: Design-2-Part; 2016 Dec 15 [cited 2016 Nov 2]. Available from: http://news.d2p.com/2016/12/15/5-emerging-technology-trends-for-manufacturers-in-2017/.
11 Feuer Z, Weissman Z. Smart factory—The factory of the future[Internet].Sunnyvale: LinkedIn; 2016 Dec 19 [cited 2016 Nov 6]. Available from: https://www.linkedin.com/pulse/smart-factory-future-zvi-feuer?articleId=8390740796107302304.
12 The ThingWorx IoT Technology Platform [Internet]. Needham: PTC; c2017 [cited 2016 Nov 6]. Available from: https://www.thingworx.com/platforms/.
13 IBM SPSS Predictive Analytics Enterprise [Internet]. Armonk: IBM Corporation; [cited 2016 Nov 6]. Available from: https://www.ibm.com/us-en/marketplace/spss-predictive-analytics-enterprise#product-header-top.
14 Ericson G, Glover D, Franks L. Deploy an Azure Machine Learning web service [Internet]. 2017 Jan 6 [cited 2016 Nov 6]. Available from: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-publish-a-machine-learning-web-service.
15 Page C. Intel’s Nervana AI platform takes aim at Nvidia’s GPU technology. In: The Inquirer [Internet]. London: Incisive Business Media (IP) Limited; 2016 Nov 18 [cited 2016 Nov 6]. Available from: https://www.theinquirer.net/inquirer/news/2477796/intels-nervana-ai-platform-takes-aim-at-nvidias-gpu-techology.
[1] Zhou Ji, Li Peigen, Zhou Yanhong, Wang Baicun, Zang Jiyuan, Meng Liu. Toward New-Generation Intelligent Manufacturing[J]. Engineering, 2018, 4(1): 11-20.
[2] Ray Y. Zhong, Xun Xu, Eberhard Klotz, Stephen T. Newman. Intelligent Manufacturing in the Context of Industry 4.0: A Review[J]. Engineering, 2017, 3(5): 616-630.
[3] Yonghua Song,Jin Lin,Ming Tang,Shufeng Dong. An Internet of Energy Things Based on Wireless LPWAN[J]. Engineering, 2017, 3(4): 460-466.
[4] Zhihong Yuan, Weizhong Qin, Jinsong Zhao. Smart Manufacturing for the Oil Refining and Petrochemical Industry[J]. Engineering, 2017, 3(2): 179-182.
[5] Ian David Lockhart Bogle. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers[J]. Engineering, 2017, 3(2): 161-165.
[6] Jihong Chen, Jianzhong Yang, Huicheng Zhou, Hua Xiang, Zhihong Zhu, Yesong Li, Chen-Han Lee, Guangda Xu. CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach[J]. Engineering, 2015, 1(2): 247-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering