Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (5) : 695-700     https://doi.org/10.1016/J.ENG.2017.05.012
Research |
用于粉末床增材制造的铬镍铁合金粉末特征研究
Quy Bau Nguyen1(),Mui Ling Sharon Nai1(),Zhiguang Zhu1,Chen-Nan Sun1,Jun Wei1(),Wei Zhou2
1. Singapore Institute of Manufacturing Technology, Singapore 637662, Singapore
2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
全文: PDF(2176 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
摘要 本研究中使用不同的粉末表征技术对铬镍铁合金的原始粉末和回收粉末在粉末床增材制造(AM)上的流动特性、行为特征进行研究。结果发现,选择性激光熔化(SLM)工艺的粒径分布(PSD)范围通常在15 ~ 63 μm 之间。原始的铬镍铁合粉末的流量约为28 s·(50 g)–1,组装密度是60%。流变测试结果表明,原始粉末与回收粉末相比具有更好的流动性。讨论了两种粉末之间的相互关系。运用铬镍铁合金粉末已经成功打印出了螺旋桨。实验结果表明铬镍铁合金粉末适用于增材制造(AM),本研究为生产增材制造粉末提供参考。
关键词 增材制造粉末特征气体雾化微观结构铬镍铁合金    
Abstract

In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM) were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD) for the selective laser melting (SLM) process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g)-1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to produce AM powders.

Keywords Additive manufacturing      Powder characteristics      Gas atomization      Microstructure      Inconel     
最新录用日期:    在线预览日期:    发布日期: 2017-11-08
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Quy Bau Nguyen
Mui Ling Sharon Nai
Zhiguang Zhu
Chen-Nan Sun
Jun Wei
Wei Zhou
引用本文:   
Quy Bau Nguyen,Mui Ling Sharon Nai,Zhiguang Zhu, et al. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695-700.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.05.012     OR     http://engineering.org.cn/EN/Y2017/V3/I5/695
Material Ni Ti Cr Mo Nb Fe C Mn Si Al Co Cu
Virgin (wt%) 52.35 0.85 20.12 3.04 5.10 Balance 0.013 0.09 0.08 0.60 0.16 0.012
Recycled (wt%) 52.32 0.83 20.15 2.96 5.05 Balance 0.019 0.08 0.08 0.55 0.15 0.011
Tab.1  Chemical composition of virgin and recycled IN718 powders.
Material D10 (μm) D50 (μm) D90 (μm) Hall flow rate (s·(50 g)−1)
Virgin 21.37±0.43 31.24±0.97 49.52±0.76 28.35±0.32
Recycled 21.92±0.54 32.35±0.78 50.71±0.85 29.47±0.42
Tab.2  PSD and Hall flow rate of virgin and recycled IN718 powders.
Fig.1  Cross-section of virgin and recycled Inconel powders.
Fig.2  PSD and surface morphology of virgin and recycled Inconel powders.
Material BFE (mJ) SI FRI SE (mJ·g−1) CBD (g·mL−1) CPS (%, at 15 kPa)
Virgin 1032±11 1.03±0.04 1.09±0.03 3.32±0.06 4.63±0.05 2.8±0.2
Recycled 1091±13 1.07±0.07 1.15±0.06 3.75±0.09 4.37±0.07 4.3±0.3
Material Cohesion (kPa) UYS (kPa) MPS (kPa) FF AIF (o) WFA (o)
Virgin 0.3±0.1 0.9±0.1 12.5±0.6 15.1±0.3 23.4±0.2 15.1±0.4
Recycled 0.5±0.1 1.5±0.2 13.1±0.8 8.8±0.5 23.7±0.2 17.4±0.4
Tab.3  Rheological results of virgin and recycled IN718 powders.
Fig.3  The results of rheological tests for virgin and recycled IN718 powders. (a) Stability and variable flow rate (VFR) test; (b) CPS test; (c) shear test; (d) wall friction test.
Fig.4  A propeller printed using EOS-M400 machine.
Fig.5  Typical microstructure of IN 718. (a) 3D view; (b) higher magnification showing column structure in XZ plane.
Material Apparent density
(g·cm-3)
Tapped density a
(g·cm-3)
True density
(g·cm-3)
Packing at apparent density (%) Packing at tapped density (%)
Virgin 3.8780±0.0172 4.9123±0.0153 8.1794±0.0059 47.4±0.3 60.0±0.2
Recycled 3.7875±0.0191 4.8755±0.0165 8.1803±0.0035 46.3±0.5 59.2±0.6
Tab.4  Results of apparent, tapped, and true densities, and packing capability of virgin and recycled IN718 powders.
Material Microhardness
(HV)
0.2YTS
(MPa)
UTS
(MPa)
Elongation
(%)
IN718-Virgin 325±12 1210±25 1404±32 18.5±1.6
IN718-Recycled 321±17 1178±31 1369±35 17.4±1.7
Tab.5  Mechanical properties of parts printed using the virgin and recycled Inconel powder.
1 Kulawik K, Buffat PA, Kruk A, Wusatowska-Sarnek AM, Czyrska-Filemonowicz A. Imaging and characterization of γ′ and γ″ nanoparticles in Inconel 718 by EDX elemental mapping and FIB–SEM tomography. Mater Charact 2015;100:74–80
https://doi.org/10.1016/j.matchar.2014.12.012
2 Chlebus E, Gruber K, Kuźnicka B, Kurzac J, Kurzynowski T. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting. Mater Sci Eng A 2015;639:647–55
https://doi.org/10.1016/j.msea.2015.05.035
3 Lundström E, Simonsson K, Gustafsson D, Månsson T. A load history dependent model for fatigue crack propagation in Inconel 718 under hold time conditions. Eng Fract Mech 2014;118:17–30
https://doi.org/10.1016/j.engfracmech.2014.02.005
4 Jia QB, Gu DD. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. J Alloys Compd 2014;585:713–21
https://doi.org/10.1016/j.jallcom.2013.09.171
5 Trosch T, Strößner J, Völkl R, Glatzel U. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater Lett 2016;164:428–31
https://doi.org/10.1016/j.matlet.2015.10.136
6 Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, et al.Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann—Manuf Techn 2016;65(2):737–60
https://doi.org/10.1016/j.cirp.2016.05.004
7 Sadowski M, Ladani L, Brindley W, Romano J. Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process. Addit Manuf 2016;11:60–70
https://doi.org/10.1016/j.addma.2016.03.006
8 Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater 2016;117:371–92
https://doi.org/10.1016/j.actamat.2016.07.019
9 Helmer H, Bauereiß A, Singer RF, Körner C. Grain structure evolution in Inconel 718 during selective electron beam melting. Mater Sci Eng A 2016;668:180–7
https://doi.org/10.1016/j.msea.2016.05.046
10 Fox JC, Moylan SP, Lane BM. Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia CIRP 2016;45:131–4
https://doi.org/10.1016/j.procir.2016.02.347
11 Strößner J, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM). Adv Eng Mater 2015;17(8):1099–105
https://doi.org/10.1002/adem.201500158
12 Carter LN, Martin C, Withers PJ, Attallah MM. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloys Compd 2014;615:338–47
https://doi.org/10.1016/j.jallcom.2014.06.172
13 Appleyard D. Powering up on powder technology. Met Powder Rep 2015;70(6):285–9
https://doi.org/10.1016/j.mprp.2015.08.075
14 Frazier WE. Metal additive manufacturing: A review. J Mater Eng Perform 2014;23(6):1917–28
https://doi.org/10.1007/s11665-014-0958-z
15 Raghavan S, Zhang BC, Wang P, Sun CN, Nai MLS, Li T, et al.Effect of different heat treatments on the microstructure and mechanical properties in selective laser melted INCONEL 718 alloy. Mater Manuf Processes 2017;32(14):1588–95
https://doi.org/10.1080/10426914.2016.1257805
16 Dawes J, Bowerman R, Trepleton R. Introduction to the additive manufacturing powder metallurgy supply chain. Johnson Matthey Technol Rev 2015;59(3):243–56
https://doi.org/10.1595/205651315X688686
17 Spierings AB, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyping J 2011;17(3):195–202
https://doi.org/10.1108/13552541111124770
18 Clayton J. Optimising metal powders for additive manufacturing. Met Powder Rep 2014;69(5):14–7
https://doi.org/10.1016/S0026-0657(14)70223-1
19 Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders—A comparative study using a powder rheometer and a rotational shear cell. Powder Technol 2007;174(1–2):25–33
https://doi.org/10.1016/j.powtec.2006.10.016
20 Strondl A, Lyckfeldt O, Brodin H, Ackelid U. Characterization and control of powder properties for additive manufacturing. JOM 2015;67(3):549–54
https://doi.org/10.1007/s11837-015-1304-0
21 Karapatis NP, Egger G, Gygax PE, Glardon R. Optimization of powder layer density in selective laser sintering. In: Proceedings of 10th Solid Freeform Fabrication Symposium; 1999Aug 9–11; Austin, USA; 1999. p. 255–63.
22 German RM. Particle packing characteristics. New Jersey: Metal Powder Industries Federation, Princeton; 1989.
[1] Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering, 2018, 4(2): 277-285.
[2] Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648-652.
[3] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685-694.
[4] Wentao Yan, Ya Qian, Weixin Ma, Bin Zhou, Yongxing Shen, Feng Lin. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701-707.
[5] Dongdong Gu, Chenglong Ma, Mujian Xia, Donghua Dai, Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675-684.
[6] Zhen Zhang, Peng Yan, Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708-715.
[7] Amelia Yilin Lee, Jia An, Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663-674.
[8] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250-257.
[9] Jun Yang,Yang Yang,Zhizhu He,Bowei Chen,Jing Liu. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future[J]. Engineering, 2015, 1(4): 506-512.
[10] Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261-268.
[11] Chao Guo, Wenjun Ge, Feng Lin. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies[J]. Engineering, 2015, 1(1): 124-130.
[12] Brian Derby. Additive Manufacture of Ceramics Components by Inkjet Printing[J]. Engineering, 2015, 1(1): 113-123.
[13] Bingheng Lu, Dichen Li, Xiaoyong Tian. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering