Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (5) : 663-674     https://doi.org/10.1016/J.ENG.2017.05.014
Research |
双向4D打印——对3D打印形状记忆材料可逆性的回顾
Amelia Yilin Lee(),Jia An(),Chee Kai Chua()
Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
全文: PDF(2018 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 
增材制造技术的快速发展和形状记忆材料的进步推动了四维(4D)打印的发展。由于一定程度上的外部刺激,人机交互作用、传感器和电池的需求将被消除,通过使用增材制造技术,可以生产出更复杂的设备和零部件。随着目前对形状记忆机制的理解和对增材制造技术的改进设计,4D 打印的可逆性已经被证明是可行的。传统的单向4D 打印需要在编程(或定型)阶段进行人机交互,但是可逆的4D 打印或双向4D 打印将完全消除对人为干预的需求,因为编程阶段被另一种外界刺激所取代。这使得可逆4D 打印部件完全依赖外部刺激。零部件在每次回收后都可能被重复利用,甚至在某个周期中可以持续使用——这是一个具有工业运用吸引力的方面。本文综述了影响4D 打印的形状记忆材料的机制,目前在合金和聚合物上的4D 打印研究结果,以及它们各自存在的一些局限性。对形状记忆材料的可逆性和利用三维(3D)打印技术制作的可行性进行了总结和分析。在对可逆4D 打印技术相关内容的介绍中,本文也强调了3D 打印技术的方法、相关驱动的机制以及实现可逆性的策略。最后,提出了可逆4D 打印技术未来的研究方向。
关键词 4D打印增材制造形状记忆材料智能材料形状记忆合金形状记忆聚合物    
Abstract

The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shape-setting) phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles—an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D) printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested.

Keywords 4D printing      Additive manufacturing      Shape memory material      Smart materials      Shape memory alloy      Shape memory polymer     
基金资助: 
在线预览日期:    发布日期: 2017-11-09
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Amelia Yilin Lee
Jia An
Chee Kai Chua
引用本文:   
Amelia Yilin Lee,Jia An,Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663-674.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.05.014     OR     http://engineering.org.cn/EN/Y2017/V3/I5/663
Fig.1  (a) The process chain of an irreversible (one-way) shape memory effect; (b) the process chain of a reversible (two-way) shape memory effect.
Fig.2  SMA phases and crystal structures. When a twinned martensite is loaded till yield strength σγ, the high stress and strain will change the martensite to detwinned martensite. After the stress is unloaded, the structure remains until it is heated to between Af and Md. When cooled below Mf, twinned martensite will form; if above Mf detwinned martensite will form. (Permission obtained from Ref. [23])
Fig.3  Basic working mechanisms for thermo-responsive SMPs. (a) DSM; (b) DCM; (c) PTM. Four steps: (i) original sample at low temperature; (ii) upon heating and compressing; (iii) after cooling and constraint removal; (iv) after heating for shape recovery. (Permission obtained from Ref. [84])
Fig.4  Molecular mechanism of a photo-responsive SMP in a grafted polymer network. Hollow triangles represent chromophores, filled circles represent permanent crosslinks, and filled diamonds represent photo-reversible crosslinks. (Permission obtained from Ref. [78])
Fig.5  Folding of an unpacked cube with hinges composed of a smart hydrophilic polymeric material; when submerged in water, the smart material actuates and the object folds into a cube. (Permission obtained from Ref. [16])
Fig.6  Complex low-temperature shapes of PAC laminates obtained by design of the laminate architecture. (a) A bilayer laminate (with one layer designed as a lamina with fibers at a prescribed orientation and the other layer as a pure matrix material) is printed, and then heated to TH (high temperature of 60?°C), stretched, cooled to TL (low temperature of 15?°C), and released. Upon release of the stress, it assumes a complex shape, depending on the laminate architecture. Upon reheating, it then assumes its original shape, a flat rectangular strip. (b) An actual strip in its original shape. (c)–(h) Results of this process with differing fiber architectures. (Permission obtained from Ref. [99])
Fig.7  The printing pattern used for a cubic box, and the resulting print at various temperatures. (a) Patterns for the print head movement to construct: (i) the base; (ii) the actuating parts; (iii) their surrounding matrix. (b) A series of images of the printed box: (i) the box as printed; (ii) the same printed box in a swollen state at room temperature; (iii) its thermal response at 60?°C. The scale bar is 1?cm. The broken lines highlight the edge of the hydrogels. (Permission obtained from Ref. [133])
AM process categories based on ASTM F2792 standard [4]AM systemsApplicable materialsRefs.
Binder jettingNANANA
Directed energy depositionLMDMetals[59,60]
NiTi and Cu alloys
Material extrusionFDMPolymers[119121]
PLA and wood-reinforced composites
Hydrogel extrusionPolymers[123125,133,134]
Hydrogels
Material jettingMaterial jetting by PolyJetPolymers[16,99111,132]
Proprietary materials
Powder bed fusionSLMMetals[4455]
NiTi and Cu-Al-Ni-Mn alloys
EBMMetals[41,5658]
NiTi alloys
Sheet laminationNANANA
Vat photopolymerizationStereolithographyPolymers[113115,117]
PCL and novel renewable soybean oil epoxidized acrylate
DLPPolymers[116]
Methacrylate PCL
Tab.1  Summary of additive manufacturing techniques and applicable shape memory materials for each technique.
Fig.8  Timeline of the progress in SMPs and 3D-printed SMPs.
Conventional SMAs3D-printed SMAsConventional SMPs3D-printed SMPs
One-way

Thermo-responsive
Magnetic-responsive

Thermo-responsive

Thermo-responsive
Chemo-responsive
Photo-responsive
Mechano-responsive
and more

Thermo-responsive
Chemo-responsive
Photo-responsive

Two-way/reversible

Thermo-responsive

Thermo-responsive in LCE
Thermo- and mechano-responsive in semi-crystalline elastomer laminates

Thermo- and chemo-responsive

Tab.2  Summary of the available stimuli for conventional SMAs, 3D-printed SMAs, conventional SMPs, and 3D-printed SMPs.
1 Wohlers T, Gornet T. History of additive manufacturing. In: Wohlers T, editor Wohlers report 2014: Additive manufacturing and 3D printing state of the industry. Fort Collins: Wohlers Associates Inc., USA; 2014. p. 1–34.
2 Chua CK, Leong KF. 3D printing and additive manufacturing: Principles and applications. 5th ed. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2017
https://doi.org/10.1142/10200
3 Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang SF, An J, et al.3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys Prototyping 2015;10(3):103–22
https://doi.org/10.1080/17452759.2015.1097054
4 ASTM International. ASTM F2792–2012a Standard terminology for additive manufacturing technologies. West Conshohocken: ASTM International; 2012.
5 Leist SK, Zhou J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyping 2016;11(4):249–62
https://doi.org/10.1080/17452759.2016.1198630
6 Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: A literature review. Int J Adv Manuf Technol 2013;67(5–8):1191–203
https://doi.org/10.1007/s00170-012-4558-5
7 Humbeeck JV. Non-medical applications of shape memory alloys. Mater Sci Eng 1999;273–275:134–48
https://doi.org/10.1016/S0921-5093(99)00293-2
8 Mantovani D. Shape memory alloys: Properties and biomedical applications. JOM 2000;52(10):36–44
https://doi.org/10.1007/s11837-000-0082-4
9 Meng H, Li GQ. A review of stimuli-responsive shape memory polymer composites. Polymer 2013;54(9):2199–221
https://doi.org/10.1016/j.polymer.2013.02.023
10 Xiao X, Kong D, Qiu X, Zhang W, Liu Y, Zhang S, et al.Shape memory polymers with high and low temperature resistant properties. Sci Rep 2015;5:14137
https://doi.org/10.1038/srep14137
11 Leng JS, Lu HB, Liu YJ, Huang WM, Du SY. Shape-memory polymers—A class of novel smart materials. MRS Bull 2009;34(11):848–55
https://doi.org/10.1557/mrs2009.235
12 Osada Y, Matsuda A. Shape memory in hydrogels. Nature 1995;376(6537):219
https://doi.org/10.1038/376219a0
13 Wei ZG, Sandstroröm R, Miyazaki S. Shape-memory materials and hybrid composites for smart systems: Part I shape-memory materials. J Mater Sci 1998;33(15):3743–62
https://doi.org/10.1023/A:1004692329247
14 Wei ZG, Sandstroröm R, Miyazaki S. Shape memory materials and hybrid composites for smart systems: Part II shape-memory hybrid composites. J Mater Sci 1998;33(15):3763–83
https://doi.org/10.1023/A:1004674630156
15 Pei E. 4D printing: Dawn of an emerging technology cycle. Assembly Autom 2014;34(4):310–4
https://doi.org/10.1108/AA-07-2014-062
16 Tibbits S. 4D printing: Multi-material shape change. Archit Des 2014;84(1):116–21
https://doi.org/10.1002/ad.1710
17 Pei E. 4D printing–Revolution or fad? Assembly Autom 2014;34(2):123–7
https://doi.org/10.1108/AA-02-2014-014
18 Tibbits S. The emergence of “4D printing”. TED Talk; 2013 Feb.
19 Li JJ, Rodgers WR, Xie T. Semi-crystalline two-way shape memory elastomer. Polymer 2011;52(23):5320–5
https://doi.org/10.1016/j.polymer.2011.09.030
20 Funakubo H. Shape memory alloys. New York: Gordon and Breach Science Publishers; 1987.
21 O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys. J Appl Phys 1998;83(6):3263–70
https://doi.org/10.1063/1.367094
22 Sun L, Huang WM. Nature of the multistage transformation in shape memory alloys upon heating. Met Sci Heat Treat 2009;51(11–12):573–8
https://doi.org/10.1007/s11041-010-9213-x
23 Jani JM, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 2014;56:1078–113
https://doi.org/10.1016/j.matdes.2013.11.084
24 Lagoudas DC. Shape memory alloys: Modeling and engineering application. New York: Spinger; 2008.
25 Fredmond M, Miyazaki S. Shape memory alloys. New York: Springer-Verlag Wien GmbH; 1996
https://doi.org/10.1007/978-3-7091-4348-3
26 Buehler WJ, Gilfrich JV, Wiley RC. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Appl Phys 1963;34(5):1475–7
https://doi.org/10.1063/1.1729603
27 Duerig TW, Pelton AR. Ti-Ni shape memory alloys. In: Boyer R, Welsch G, Collings EW, editors Materials properties handbook: Titanium alloys. Russell: ASM International; 1994. p. 1035–48.
28 Yoo YI, Lee JJ, Lee CH, Lim JH. An experimental study of the two-way shape memory effect in a NiTi tubular actuator. Smart Mater Struct 2010;19(12):125002
https://doi.org/10.1088/0964-1726/19/12/125002
29 Eftifeeva A, Panchenko E, Chumlyakov Y, Maier HJ. Investigation of the two-way shape memory effect in [001]-oriented Co35Ni35Al30 single crystals. AIP Conf Proc 2016;1698(1):03002
https://doi.org/10.1063/1.4937824
30 Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C. Stimulus-responsive shape memory materials: A review. Mater Des 2012;33:577–640
https://doi.org/10.1016/j.matdes.2011.04.065
31 Buehler WJ, Wang FE. A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1968;1(1):105–8
https://doi.org/10.1016/0029-8018(68)90019-X
32 Liu Y. Some factors affecting the transformation hysteresis in shape memory alloys. In: Chen HR, editor Shape memory alloys. New York: Nova Science Publishers, Inc.; 2010. p. 361–9.
33 Dynalloy Inc. Technical characteristics of Flexinol actuator wires. Tustin: Dynalloy, Inc.; 2011.
34 Dolce M, Cardone D, Marnetto R. Implementation and testing of passive control devices based on shape memory alloys. Earthq Eng Struct D 2000;29(5):945–68
https://doi.org/10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
35 Paul DI, McGehee W, O’Handley RC, Richard M. Ferromagnetic shape memory alloys: A theoretical approach. J Appl Phys 2007;101(12):123917
https://doi.org/10.1063/1.2740328
36 Planes A, Mañosa L. Ferromagnetic shape-memory alloys. Mater Sci Forum 2006;512:145–52
https://doi.org/10.4028/www.scientific.net/MSF.512.145
37 Chopra HD, Ji CH, Kokorin VV. Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys. Phys Rev B 2000;61(22):R14913–5
https://doi.org/10.1103/PhysRevB.61.R14913
38 Tellinen J, Suorsa I, Jääskeläinen A, Aaltio I, Ullakko K. Basic properties of magnetic shape memory actuators. In: Proceedings of 8th International Conference ACTUATOR 2002; 2002 Jun 10–12; Bremen, Germany; 2002. p. 566–9.
39 Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—A new actuation mechanism with large work output. Adv Funct Mater 2009;19(7):983–98
https://doi.org/10.1002/adfm.200801322
40 Rapp B. Nitinol for stents. Mater Today 2004;7(5):13
https://doi.org/10.1016/S1369-7021(04)00225-1
41 Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB. Manufacturing and processing of NiTi implants: A review. Prog Mater Sci 2012;57(5):911–46
https://doi.org/10.1016/j.pmatsci.2011.11.001
42 Haberland C, Meier H, Frenzel J. On the properties of Ni-rich NiTi shape memory alloys produced by selective laser melting. In: Proceedings of ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2012 Sep 19–21; Stone Mountain, GA, USA. West Conshohocken: ASTM International; 2012. p. 97–104.
43 Dadbakhsh S, Speirs M, Kruth JP, Schrooten J, Luyten J, Van Humbeeck J. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 2014;16(9):1140–6
https://doi.org/10.1002/adem.201300558
44 Chua CK, Leong KF. 3D printing and additive manufacturing: Principles and applications. 4th ed. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2014
https://doi.org/10.1142/9008
45 Khoo ZX, Ong C, Liu Y, Chua CK, Leong KF, Yang SF. Selective laser melting of nickel titanium shape memory alloy. In: Proceedings of the 2nd International Conference on Progress in Additive Manufacturing; 2016 May 16–19; Singapore; 2016. p. 451–6.
46 Shishkovsky I, Yadroitsev I, Smurov I. Direct selective laser melting of nitinol powder. Phys Procedia 2012;39:447–54
https://doi.org/10.1016/j.phpro.2012.10.060
47 Meier H, Haberland C, Frenzel J, Zarnetta R. Selective laser melting of NiTi shape memory components. In: Proceedings of the 4th International Conference on Advanced Research and Rapid Prototyping; 2009 Oct 6–10; Leiria, Portugal. London: CRC Press; 2009. p. 233–8
https://doi.org/10.1201/9780203859476.ch35
48 Halani PR, Kaya I, Shin YC, Karaca HE. Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition. Mater Sci Eng A 2013;559:836–43
https://doi.org/10.1016/j.msea.2012.09.031
49 Haberland C, Elahinia M, Walker J, Meier H, Frenzel J. Additive manufacturing of shape memory devices and pseudoelastic components. In: Proceedings of ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2013 Sep 16–18; Snowbird, UT, USA. New York: ASME; 2013. p. V001T01A005
https://doi.org/10.1115/SMASIS2013-3070
50 Andani MT, Haberland C, Walker J, Elahinia M. An investigation of effective process parameters on phase transformation temperature of nitinol manufactured by selective laser melting. In: Proceedings of ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2014 Sep 8–10; Newport, RI, USA. New York: ASME; 2014. p. V001T01A026
https://doi.org/10.1115/SMASIS2014-7649
51 Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 2010;58(9):3444–58
https://doi.org/10.1016/j.actamat.2010.02.019
52 Saburi T. Ti-Ni shape memory alloys. In: Otsuka K, Wayman CM, editors Shape memory materials. New York: Cambridge University Press; 1999. p. 49–96.
53 Meier H, Haberland C, Frenzel J. Structural and functional properties of NiTi shape memory alloys produced by selective laser melting. In: Proceedings of the 5th International Conference on Advanced Research in Virtual and Rapid Prototyping; 2011 Sep 28–Oct 1; Leiria, Portugal. London: CRC Press; 2011. p. 291–6
https://doi.org/10.1201/b11341-47
54 Andani MT, Saedi S, Turabi AS, Karamooz MR, Haberland C, Karaca HE, et al.Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater 2017;68:224–31
https://doi.org/10.1016/j.jmbbm.2017.01.047
55 Gustmann T, Neves A, Kühn U, Gargarella P, Kiminami CS, Bolfarini C, et al.Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Addit Manuf 2016;11:23–31
https://doi.org/10.1016/j.addma.2016.04.003
56 Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 2007;13(4):196–203
https://doi.org/10.1108/13552540710776142
57 Shishkovsky I, Morozov Y, Smurov I. Nanofractal surface structure under laser sintering of titanium and nitinol for bone tissue engineering. Appl Surf Sci 2007;254(4):1145–9
https://doi.org/10.1016/j.apsusc.2007.09.021
58 Le B, McVary K, Colombo A. MP25-09 use of 3D printing to prototype a custom shape memory alloy penile prosthesis. J Urology 2017;197(4):e313
https://doi.org/10.1016/j.juro.2017.02.759
59 Khademzadeh S, Parvin N, Bariani PF. Production of NiTi alloy by direct metal deposition of mechanically alloyed powder mixtures. Int J Precis Eng Manuf 2015;16(11):2333–8
https://doi.org/10.1007/s12541-015-0300-1
60 Donoso GR, Walczak M, Moore ER, Ramos-Grez JA. Towards direct metal laser fabrication of Cu-based shape memory alloys. Rapid Prototyping J 2017;23(2):329–36
https://doi.org/10.1108/RPJ-02-2016-0017
61 Gall K, Maier HJ. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater 2002;50(18):4643–57
https://doi.org/10.1016/S1359-6454(02)00315-4
62 Dadbakhsh S, Speirs M, Kruth JP, Van Humbeeck J. Influence of SLM on shape memory and compression behavior of NiTi scaffolds. CIRP Ann—Manuf Technol 2015;64(1):209–12
https://doi.org/10.1016/j.cirp.2015.04.039
63 Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M. Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 2004;378(1–2):24–33
https://doi.org/10.1016/j.msea.2003.10.327
64 Pelton AR, Huang GH, Moine P, Sinclair R. Effects of thermal cycling on microstructure and properties in Nitinol. Mater Sci Eng A 2012;532:130–8
https://doi.org/10.1016/j.msea.2011.10.073
65 Benafan O, Noebe RD, Padula II SA, Brown DW, Vogel S, Vaidyanathan R. T hermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution. Int J Plast 2014;56:99–118
https://doi.org/10.1016/j.ijplas.2014.01.006
66 Bowers ML, Gao Y, Yang L, Gaydosh DJ, De Graef M, Noebe RD, et al.Austenite grain refinement during load-biased thermal cycling of a Ni49.9Ti50.1 shape memory alloy. Acta Mater 2015;91:318–29
https://doi.org/10.1016/j.actamat.2015.03.017
67 Gao Y, Casalena L, Bowers ML, Noebe RD, Mills MJ, Wang Y. An origin of functional fatigue of shape memory alloys. Acta Mater 2017;126:389–400
https://doi.org/10.1016/j.actamat.2017.01.001
68 Huang W, Toh W. Training two-way shape memory alloy by reheat treatment. J Mater Sci Lett 2000;19(17):1549–50
https://doi.org/10.1023/A:1006721022185
69 Wang ZG, Zu XT, You LP, Feng XD, Zhang CF. Investigation on the two-way shape memory effect and alternating current electrothermal driving characteristics of TiNiCu shape memory alloy. J Mater Sci 2004;39(10):3391–5
https://doi.org/10.1023/B:JMSC.0000026941.93740.ec
70 Leu CC, Vokoun D, Hu CT. Two-way shape memory effect of TiNi alloys induced by hydrogenation. Metall Mater Trans A 2002;33(1):17–23
https://doi.org/10.1007/s11661-002-0002-z
71 Townsend A, Senin N, Blunt L, Leach RK, Taylor JS. Surface texture metrology for metal additive manufacturing: A review. Precis Eng 2016;46:34–47
https://doi.org/10.1016/j.precisioneng.2016.06.001
72 Hornat CC, Yang Y, Urban MW. Quantitative predictions of shape-memory effects in polymers. Adva Mater 2017;29(7):1603334
https://doi.org/10.1002/adma.201603334
73 Liu Y, Genzer J, Dickey MD. “2D or not 2D”: Shape-programming polymer sheets. Prog Polym Sci 2016;52:79–106
https://doi.org/10.1016/j.progpolymsci.2015.09.001
74 Sokolowski W, Tan S, Pryor M.Lightweight shape memory self-deployable structures for gossamer applications. In: Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference; 2004 Apr 19–22; Palm Springs, CA, USA; 2014.
75 Lendlein A, Kelch S. Shape-memory polymers. Angew Chem Int Ed 2002;41(12):2034–57
https://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
76 Behl M, Lendlein A. Shape-memory polymers. Mater Today 2007;10(4):20–8
https://doi.org/10.1016/S1369-7021(07)70047-0
77 Gall K, Mikulas M, Munshi NA, Beavers F, Tupper M. Carbon fiber reinforced shape memory polymer composites. J Intelli Mater Syst Struct 2000;11(11):877–86
https://doi.org/10.1106/EJGR-EWNM-6CLX-3X2M
78 Lendlein A, Jiang H, Jünger O, Langer R. Light-induced shape-memory polymers. Nature 2005;434(7035):879–82
https://doi.org/10.1038/nature03496
79 Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers 2011;3(3):1215–42
https://doi.org/10.3390/polym3031215
80 Leng JS, Lan X, Liu YJ, Du SY. Shape-memory polymers and their composites: Stimulus methods and applications. Prog Mater Sci 2011;56(7):1077–135
https://doi.org/10.1016/j.pmatsci.2011.03.001
81 Jiang HY, Kelch S, Lendlein A. Polymers move in response to light. Adv Mat 2006;18(11):1471–5
https://doi.org/10.1002/adma.200502266
82 Ratna D, Karger-Kocsis J. Recent advances in shape memory polymers and composites: A review. J Mater Sci 2008;43(1):254–69
https://doi.org/10.1007/s10853-007-2176-7
83 Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H. Shape memory materials. Mater Today 2010;13(7–8):54–61
https://doi.org/10.1016/S1369-7021(10)70128-0
84 Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, et al.Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. J Polym Res 2012;19:9952
https://doi.org/10.1007/s10965-012-9952-z
85 Zhou Y, Huang WM. Shape memory effect in polymeric materials: Mechanisms and optimization. Proc IUTAM 2015;12:83–92
https://doi.org/10.1016/j.piutam.2014.12.010
86 Xie T. Recent advances in polymer shape memory. Polymer 2011;52(22):4985–5000
https://doi.org/10.1016/j.polymer.2011.08.003
87 Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 2010;35(1–2):3–23
https://doi.org/10.1016/j.progpolymsci.2009.10.002
88 Wu XL, Huang WM, Zhao Y, Ding Z, Tang C, Zhang JL. Mechanisms of the shape memory effect in polymeric materials. Polymers 2013;5(4):1169–202
https://doi.org/10.3390/polym5041169
89 Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H. Cooling-/water-responsive shape memory hybrids. Compos Sci Technol 2012;72(10):1178–82
https://doi.org/10.1016/j.compscitech.2012.03.027
90 Roos Y, Karel M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J Food Sci 1991;56(1):38–43
https://doi.org/10.1111/j.1365-2621.1991.tb07970.x
91 Lu HB, Huang WM, Yao YT. Review of chemo-responsive shape change/memory polymers. Pigm Resin Technol 2013;42(4):237–46
https://doi.org/10.1108/PRT-11-2012-0079
92 Huang WM, Yang B, An L, Li C, Chan YS. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl Phys Lett 2005;86(11):114105
https://doi.org/10.1063/1.1880448
93 Varghese S, Lele AK, Srinivas D, Sastry M, Mashelkar RA. Novel macroscopic self-organization in polymer gels. Adv Mater 2001;13(20):1544–8
https://doi.org/10.1002/1521-4095(200110)13:20<1544::AID-ADMA1544>3.0.CO;2-F
94 Huang WM, Song CL, Fu YQ, Wang CC, Zhao Y, Purnawali H, et al.Shaping tissue with shape memory materials. Adv Drug Delivery Rev 2013;65(4):515–35
https://doi.org/10.1016/j.addr.2012.06.004
95 Zhu CC, Bettinger CJ. Photoreconfigurable physically cross-linked triblock copolymer hydrogels: Photodisintegration kinetics and structure–property relationships. Macromolecules 2015;48(5):1563–72
https://doi.org/10.1021/ma502372f
96 Zhu CC, Bettinger CJ. Light-induced remodeling of physically crosslinked hydrogels using near-IR wavelengths. J Mater Chem B 2014;2(12):1613–8
https://doi.org/10.1039/C3TB21689F
97 Johnson JA, Turro NJ, Koberstein JT, Mark JE. Some hydrogels having novel molecular structures. Prog Polym Sci 2010;35(3):332–7
https://doi.org/10.1016/j.progpolymsci.2009.12.002
98 Behl M, Razzaq MY, Lendlein A. Multifunctional shape-memory polymers. Adv Mater 2010;22(31):3388–410
https://doi.org/10.1002/adma.200904447
99 Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater Struct 2014;23(9):094007
https://doi.org/10.1088/0964-1726/23/9/094007
100 Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett 2013;103(13):131901
https://doi.org/10.1063/1.4819837
101 Bodaghi M, Damanpack AR, Liao WH. Self-expanding/shrinking structures by 4D printing. Smart Mater Struct 2016;25:105034
https://doi.org/10.1088/0964-1726/25/10/105034
102 Wu J, Yuan C, Ding Z, Isakov M, Mao Y, Wang T, et al.Multi-shape active composites by 3D printing of digital shape memory polymers. Sci Rep 2016;6:24224
https://doi.org/10.1038/srep24224
103 Yu K, Ritchie A, Mao YQ, Dunn ML, Qi HJ. Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Proc IUTAM 2015;12:193–203
https://doi.org/10.1016/j.piutam.2014.12.021
104 Mao YQ, Yu K, Isakov MS, Wu JT, Dunn ML, Qi HJ. Sequential self-folding structures by 3D printed digital shape memory polymers. Sci Rep 2015;5:13616
https://doi.org/10.1038/srep13616
105 Xie T, Xiao XC, Cheng YT. Revealing triple-shape memory effect by polymer bilayers. Macromol Rapid Commun 2009;30(21):1823–7
https://doi.org/10.1002/marc.200900409
106 Luo XF, Mather PT. Triple-shape polymeric composites (TSPCs). Adv Funct Mater 2010;20(16): 2649–56
https://doi.org/10.1002/adfm.201000052
107 Ge Q, Luo XF, Iversen CB, Nejad HB, Mather PT, Dunn ML, et al.A finite deformation thermomechanical constitutive model for triple shape polymeric composites based on dual thermal transitions. Int J Solids Struct 2014;51(15–16):2777–90
https://doi.org/10.1016/j.ijsolstr.2014.03.029
108 Xie T. Tunable polymer multi-shape memory effect. Nature 2010;464(7286):267–70
https://doi.org/10.1038/nature08863
109 Bellin I, Kelch S, Langer R, Lendlein A. Polymeric triple-shape materials. Proc Natl Acad Sci USA 2006;103(48):18043–7
https://doi.org/10.1073/pnas.0608586103
110 Ware T, Hearon K, Lonnecker A, Wooley KL, Maitland DJ, Voit W. Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 2012;45(2):1062–9
https://doi.org/10.1021/ma202098s
111 Sun L, Huang WM. Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 2010;6:4403–6
https://doi.org/10.1039/c0sm00236d
112 Teoh JEM, An J, Chua CK, Lv M, Krishnasamy V, Liu Y. Hierarchically self-morphing structure through 4D printing. Virtual Phys Prototyping 2017;12(1):61–8
https://doi.org/10.1080/17452759.2016.1272174
113 Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 2016;6:31110
https://doi.org/10.1038/srep31110
114 Choong YYC, Maleksaeedi S, Eng H, Su PC, Wei J. Curing characteristics of shape memory polymers in 3D projection and laser stereolithography. Virtual Phys Prototyping 2017;12(1):77–84
https://doi.org/10.1080/17452759.2016.1254845
115 Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 2016;28(22):4449–54
https://doi.org/10.1002/adma.201503132
116 Zarek M, Layani M, Eliazar S, Mansour N, Cooperstein I, Shukrun E, et al.4 D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual Phys Prototyping 2016;11(4):263–70
https://doi.org/10.1080/17452759.2016.1244085
117 Miao S, Zhu W, Castro NJ, Nowicki M, Zhou X, Cui H, et al.4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep 2016;6:27226
https://doi.org/10.1038/srep27226
118 An J, Chua CK, Mironov V. A perspective on 4D bioprinting. Int J Bioprint 2015;2(1):3–5.
119 Zhang Q, Yan D, Zhang K, Hu G. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci Rep 2015;5:8936
https://doi.org/10.1038/srep08936
120 Le Duigou A, Castro M, Bevan R, Martin N. 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater Des 2016;96:106–14
https://doi.org/10.1016/j.matdes.2016.02.018
121 Le Duigou A, Bourmaud A, Davies P, Baley C. Long term immersion in natural seawater of Flax/PLA biocomposite. Ocean Eng 2014;90:140–8
https://doi.org/10.1016/j.oceaneng.2014.07.021
122 Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater 2016;15(4):413–8
https://doi.org/10.1038/nmat4544
123 Armon S, Efrati E, Kupferman R, Sharon E. Geometry and mechanics in the opening of chiral seed pods. Science 2011;333(6050):1726–30
https://doi.org/10.1126/science.1203874
124 Aharoni H, Sharon E, Kupferman R. Geometry of thin nematic elastomer sheets. Phys Rev Lett 2014;113(25):257801
https://doi.org/10.1103/PhysRevLett.113.257801
125 Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML. Direct 4D printing via active composite materials. Sci Adv 2017;3(4):e1602890
https://doi.org/10.1126/sciadv.1602890
126 Balk M, Behl M, Wischke C, Zotzmann J, Lendlein A. Recent advances in degradable lactide-based shape-memory polymers. Adv Drug Delivery Rev 2016;107:136–52
https://doi.org/10.1016/j.addr.2016.05.012
127 Chen SJ, Hu JL, Zhuo HT, Zhu Y. Two-way shape memory effect in polymer laminates. Mater Lett 2008;62(25):4088–90
https://doi.org/10.1016/j.matlet.2008.05.073
128 Chen SJ, Hu JL, Zhuo HT. Properties and mechanism of two-way shape memory polyurethane composites. Compos Sci Technol 2010;70(10):1437–43
https://doi.org/10.1016/j.compscitech.2010.01.017
129 Tamagawa H. Thermo-responsive two-way shape changeable polymeric laminate. Mater Lett 2010;64(6):749–51
https://doi.org/10.1016/j.matlet.2009.12.053
130 Westbrook KK, Mather PT, Parakh V, Dunn ML, Ge Q, Lee BM, et al.Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mater Struct 2011;20(6):065010
https://doi.org/10.1088/0964-1726/20/6/065010
131 Bai YK, Zhang XR, Wang QH, Wang TM. A tough shape memory polymer with triple-shape memory and two-way shape memory properties. J Mater Chem A 2014;2:4771–8
https://doi.org/10.1039/c3ta15117d
132 Mao Y, Ding Z, Yuan C, Ai S, Isakov M, Wu J, et al.3D printed reversible shape changing components with stimuli responsive materials. Sci Rep 2016;6:24761
https://doi.org/10.1038/srep24761
133 Naficy S, Gately R, Gorkin III R, Xin H, Spinks GM. 4D printing of reversible shape morphing hydrogel structures. Macromol Mater Eng 2016;302(1):1600212
https://doi.org/10.1002/mame.201600212
134 Castro NJ, Meinert C, Levett P, Hutmacher DW. Current developments in multifunctional smart materials for 3D/4D bioprinting. Curr Opin Biomed Eng 2017;2:67–75
https://doi.org/10.1016/j.cobme.2017.04.002
135 Kawai T, Matsuda T, inventors; JMSCo., Ltd., assignee. Plastic molded articles with shape memory property. European patent EP19890300839. 1994 Dec 21.
136 Brenner D, Lundberg RD, inventors; Exxon Research & Engineering Co., assignee. Elastomeric systems having unusual memory characteristics. United States patent US 05/855,567. 1980 Mar 18.
137 Froix M, inventor; Quanam Medical Corporation, assignee. Expandable polymeric stent with memory and delivery apparatus and method. United States patent US 09/177,917. 2011 Jun 19.
138 Froix M, inventor; Froix M, assignee. Method of using expandable polymeric stent with memory. United States patent US 07/874,181. 1993 Nov 2.
139 Schroeppel EA, Spehr PR, Machek JE, inventors; Intermedics Inc., assignee. Implantable cardiac lead with multiple shape memory polymer structures. United States patent US 09/025,164. 1999 Sep 28.
140 Kim BK, Lee SY, Xu M. Polyurethanes having shape memory effects. Polymer 1996;37(26):5781–93
https://doi.org/10.1016/S0032-3861(96)00442-9
141 Liang C, Rogers CA, Malafeew E. Investigation of shape memory polymers and their hybrid composites. Journal of Intelligent Material Systems and Structures 1997;8(4):380–6
https://doi.org/10.1177/1045389X9700800411
142 Chung T, Romo-Uribe A, Mather PT. Two-way reversible shape memory in a semicrystalline network. Macromolecules 2008;41(1):184–92
https://doi.org/10.1021/ma071517z
143 Teoh JEM, Chua CK, Liu Y, An J. 4D printing of customised smart sunshade: A conceptual study. In: da Silva FM, Bártolo H, Bártolo P, Almendra R, Roseta F, Almeida HA, et al., editors Challenges for technology innovation: An agenda for the future. London: CRC Press; 2017. p. 105–8
https://doi.org/10.1201/9781315198101-24
[1] Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering, 2018, 4(2): 277-285.
[2] Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695-700.
[3] Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648-652.
[4] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685-694.
[5] Wentao Yan, Ya Qian, Weixin Ma, Bin Zhou, Yongxing Shen, Feng Lin. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701-707.
[6] Dongdong Gu, Chenglong Ma, Mujian Xia, Donghua Dai, Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675-684.
[7] Zhen Zhang, Peng Yan, Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708-715.
[8] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250-257.
[9] Jun Yang,Yang Yang,Zhizhu He,Bowei Chen,Jing Liu. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future[J]. Engineering, 2015, 1(4): 506-512.
[10] Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261-268.
[11] Chao Guo, Wenjun Ge, Feng Lin. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies[J]. Engineering, 2015, 1(1): 124-130.
[12] Brian Derby. Additive Manufacture of Ceramics Components by Inkjet Printing[J]. Engineering, 2015, 1(1): 113-123.
[13] Bingheng Lu, Dichen Li, Xiaoyong Tian. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering