Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (5) : 648-652     https://doi.org/10.1016/J.ENG.2017.05.017
Research |
喷气发动机部件的增材设计与制造
韩品连()
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
全文: PDF(2280 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
摘要 喷气发动机部件的增材设计(AD)和增材制造(AM)将彻底改变传统的航空航天工业。增材设计的独特性开创了喷气发动机设计和制造的新方向,比如梯度材料和微观结构。工程师已经从传统方法和技术的诸多限制中解放出来。增材制造过程最重要的特征之一是其可以确保零件的一致性,因为它始于点,继而到线和层面,直至整个部件完成。设计和制造之间的协调是空气动力学、热力学、结构整合、传热、材料开发和加工等方面取得成功的关键。工程师必须改变设计零件的方式,因为他们要从传统的“减材”方法转移到“增材”的新方法来制造零件。增材设计与增材制造设计不一样。我们需要一种新方法和新工具来协助这种新的设计和制方式。本文详细讨论了增材设计与增材制造中的需求,以及如何解决当前的问题。
关键词 增材制造增材设计喷气发动机多孔结构    
Abstract

The additive design (AD) and additive manufacturing (AM) of jet engine parts will revolutionize the traditional aerospace industry. The unique characteristics of AM, such as gradient materials and micro-structures, have opened up a new direction in jet engine design and manufacturing. Engineers have been liberated from many constraints associated with traditional methodologies and technologies. One of the most significant features of the AM process is that it can ensure the consistency of parts because it starts from point(s), continues to line(s) and layer(s), and ends with the competed part. Collaboration between design and manufacturing is the key to success in fields including aerodynamics, thermodynamics, structural integration, heat transfer, material development, and machining. Engineers must change the way they design a part, as they shift from the traditional method of “subtracting material” to the new method of “adding material” in order to manufacture a part. AD is not the same as designing for AM. A new method and new tools are required to assist with this new way of designing and manufacturing. This paper discusses in detail what is required in AD and AM, and how current problems can be solved.

Keywords Additive manufacturing      Additive design      Jet engine      Porous structure     
最新录用日期:    在线预览日期:    发布日期: 2017-11-08
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Pinlian Han
引用本文:   
Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648-652.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.05.017     OR     http://engineering.org.cn/EN/Y2017/V3/I5/648
Fig.1  Jet engine application of AM. (a) Turbo fan jet engine; (b) fuel nozzle; (c) high-pressure turbine nozzle; (d) high-pressure turbine blade.
Fig.2  Value-added improvement for a jet engine through AD/AM. The green blocks in the figure are those with great potential to be improved with AD/AM.
Fig.3  Current fan blade methodology and futures for fan blade design. DB/SPF: diffusion bonding/sheet superplastic forming.
Fig.4  The use of AD/AM for a better cooling structure of a high-pressure turbine blade [1]. (a) Different cooling mechanisms; (b) development of turbine blade cooling structure.
Fig.5  As shown here using the example of turbine blade design, 3D printing will revolutionize turbine blade design and change our dependence on special materials. (a) The potential of material is limited; (b) cooling structure for intergrated bladed rotor. TBC: thermal barrier coating; SX: single crystal alloy; CMC: ceramic matrix composite.
Fig.6  This new discipline of engineering faces challenges in material, mechanics, mathematics, and physics. AD/AM provides the opportunity to change the world.
1 Lakshminarayana B. Fluid dynamics and heat transfer of turbomachinery. New York: John Wiley and Sons Ltd.; 1996.
[1] Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering, 2018, 4(2): 277-285.
[2] Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695-700.
[3] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685-694.
[4] Wentao Yan, Ya Qian, Weixin Ma, Bin Zhou, Yongxing Shen, Feng Lin. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701-707.
[5] Dongdong Gu, Chenglong Ma, Mujian Xia, Donghua Dai, Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675-684.
[6] Zhen Zhang, Peng Yan, Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708-715.
[7] Amelia Yilin Lee, Jia An, Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663-674.
[8] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250-257.
[9] Jun Yang,Yang Yang,Zhizhu He,Bowei Chen,Jing Liu. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future[J]. Engineering, 2015, 1(4): 506-512.
[10] Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261-268.
[11] Chao Guo, Wenjun Ge, Feng Lin. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies[J]. Engineering, 2015, 1(1): 124-130.
[12] Brian Derby. Additive Manufacture of Ceramics Components by Inkjet Printing[J]. Engineering, 2015, 1(1): 113-123.
[13] Bingheng Lu, Dichen Li, Xiaoyong Tian. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering