Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (5) : 773-778     https://doi.org/10.1016/J.ENG.2017.05.018
Research |
CMIP5模式在东亚-西北太平洋地区的鲁棒性分析
周天军(),陈晓龙,吴波,郭准,孙咏,邹立维,满文敏,张丽霞,何超
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
全文: PDF(1317 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 
耦合模式比较计划(CMIP)是气候模拟研究领域的重要国际合作平台,服务于气候模式比较、气候变率、气候预测和气候预估。改善气候模式在东亚和西北太平洋地区的模拟性能,一直是气候模式领域面临的一项挑战。针对第五次耦合模式比较计划(CMIP5)中的气候模式,本文提供了综合鲁棒性分析。本文从气候平均态、年际变率、中上新世(MP)和过去千年的历史气候变化、气候预估的角度,对CMIP5 模式的优缺点进行了评估。另外,还评估了区域气候模式相对于驱动其运行的全球气候模式带来的模拟增值。从CMIP3 到CMIP5,模式的可信度明显提高,气候平均态、年际变率和过去气候变化的模拟情况有所改善,但在CMIP5 模式中,一些之前已知的偏差,如西北太平洋副热带高压脊线的位置和与之相关的降水偏差等,仍然很明显。对于年际振幅的模拟也存在明显的缺陷,如厄尔尼诺- 南方涛动(ENSO)与季风的关系。在模拟平均气候态和年际变率时,耦合模式的表现通常优于单独大气模式。多模式比较的结果表明,尽管在克劳修斯- 克拉珀龙方程约束下模式预估的降水一致增加,但未来气候预估仍存在明显的不确定性。对东亚- 西北太平洋地区的动力降尺度预估而言,区域海洋- 大气耦合模式是一个较好的选择。
关键词 东亚季风西北太平洋气候厄尔尼诺-南方涛动过去的气候变化气候预估耦合气候模式区域气候模式    
Abstract

The Coupled Model Intercomparison Project (CMIP) is an international community-based infrastructure that supports climate model intercomparison, climate variability, climate prediction, and climate projection. Improving the performance of climate models over East Asia and the western North Pacific has been a challenge for the climate-modeling community. In this paper, we provide a synthesis robustness analysis of the climate models participating in CMIP-Phase 5 (CMIP5). The strengths and weaknesses of the CMIP5 models are assessed from the perspective of climate mean state, interannual variability, past climate change during the mid-Pliocene (MP) and the last millennium, and climate projection. The added values of regional climate models relative to the driving global climate models are also assessed. Although an encouraging increase in credibility and an improvement in the simulation of mean states, interannual variability, and past climate changes are visible in the progression from CMIP3 to CMIP5, some previously noticed biases such as the ridge position of the western North Pacific subtropical high and the associated rainfall bias are still evident in CMIP5 models. Weaknesses are also evident in simulations of the interannual amplitude, such as El Niño-Southern Oscillation (ENSO)-monsoon relationships. Coupled models generally show better results than standalone atmospheric models in simulating both mean states and interannual variability. Multi-model intercomparison indicates significant uncertainties in the future projection of climate change, although precipitation increases consistently across models constrained by the Clausius-Clapeyron relation. Regional ocean-atmosphere coupled models are recommended for the dynamical downscaling of climate change projections over the East Asia-western North Pacific domain.

Keywords East Asian monsoon      Western North Pacific climate      El Niño-Southern Oscillation      Past climate change      Climate projection      Coupled climate model      Regional climate model     
基金资助: 
最新录用日期:    在线预览日期:    发布日期: 2017-11-08
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Tianjun Zhou
Xiaolong Chen
Bo Wu
Zhun Guo
Yong Sun
Liwei Zou
Wenmin Man
Lixia Zhang
Chao He
引用本文:   
Tianjun Zhou,Xiaolong Chen,Bo Wu, et al. A Robustness Analysis of CMIP5 Models over the East Asia-Western North Pacific Domain[J]. Engineering, 2017, 3(5): 773-778.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.05.018     OR     http://engineering.org.cn/EN/Y2017/V3/I5/773
Fig.1  Observed SST (shaded; units: °C), precipitation (contours; units: mm·d−1), and 850 hPa wind (vectors; units: m·s−1) regressed on the observed EASM index (NCEP-2 index, except for ERA-40) in (a) GPCP and NCEP-2; (b) CMAP and ERA-40; (c) CMIP3 MME; (d) CMIP5 MME. NCEP-2 and ERA-40 are two reanalysis data and GPCP and CMAP are two observed precipitation data. Details of these data are seen in Ref. [4]. Green (purple) lines represent the positive (negative) precipitation anomalies. Contour interval is 0.35 mm·d−1. Wind with magnitude less than 0.45 m·s−1 is omitted. The red dots indicate that the regressed SST is significant at the 10% level by Student’s t-test. NCEP: National Centers for Environmental Prediction; ERA-40: European Center for Medium-Range Weather Forecasts 45-year Reanalysis; GPCP: Global Precipitation Climatology Project; CMAP: Climate Prediction Center Merged Analysis of Precipitation. (After Ref. [4])
Fig.2  Composite means of (a) precipitation (color shading; units: mm·d−1) and 850 hPa winds (vectors; units: m·s−1) and (b) surface air temperature (SAT) (°C) in the first summer after large volcanic eruptions. (After Ref. [36])
Fig.3  Projected future change of the summertime 500 hPa mean state over the western North Pacific. The shading is the change in geopotential height, and the vector is the change in wind. Changes in wind that are agreed upon by more than 75% of the models are stippled. The boundary of the subtropical high is indicated by the zero contour of the eddy geopotential height (solid line) and by the zero contour of the eddy stream function (dashed line), for the 20th century (blue line) and 21st century (red line), respectively. Hist: historical scenario. (After Ref. [51])
1 Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. B Am Meteorol Soc 2012;93(4):485–98
https://doi.org/10.1175/BAMS-D-11-00094.1
2 Zhou T, Zou L, Wu B, Jin C, Song F, Chen X, et al.Development of earth/climate system models in China: A review from the Coupled Model Intercomparison Project perspective. J Meteorol Res 2014;28(5):762–79
https://doi.org/10.1007/s13351-014-4501-9
3 Jiang D, Tian Z, Lang X. Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports. Int J Climatol 2016;36(3):1114–33
https://doi.org/10.1002/joc.4406
4 Song F, Zhou T. Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J Clim 2014;27(4):1679–97
https://doi.org/10.1175/JCLI-D-13-00248.1
5 Song F, Zhou T, Wang L. Two modes of the Silk Road pattern and their interannual variability simulated by LASG/IAP AGCM SAMIL2.0. Adv Atmos Sci 2013;30(3):908–21
https://doi.org/10.1007/s00376-012-2145-1
6 Song F, Zhou T. The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations? J Clim 2014;27(23):8761–77
https://doi.org/10.1175/JCLI-D-14-00396.1
7 Huang DQ, Zhu J, Zhang YC, Huang AN. Uncertainties on the simulated summer precipitation over eastern China from the CMIP5 models. J Geophys Res – Atmos 2013;118(16):9035–47
https://doi.org/10.1002/jgrd.50695
8 He C, Zhou T. The two interannual variability modes of the western North Pacific subtropical high simulated by 28 CMIP5-AMIP models. Clim Dynam 2014;43(9–10):2455–69
https://doi.org/10.1007/s00382-014-2068-x
9 Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, et al.The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dynam 2013;41(9–10):2711–44
https://doi.org/10.1007/s00382-012-1607-6
10 Seo KH, Ok J, Son JH, Cha DH. Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J Clim 2013;26(19):7662–75
https://doi.org/10.1175/JCLI-D-12-00694.1
11 Qu X, Huang G, Zhou W. Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations. Theor Appl Climatol 2014;117(1–2):123–31
https://doi.org/10.1007/s00704-013-0995-9
12 Kitoh A, Uchiyama T. Changes in onset and withdrawal of the East Asian summer rainy season by multi-model global warming experiments. J Meteorol Soc Jpn 2006;84(2):247–58
https://doi.org/10.2151/jmsj.84.247
13 Zou L, Zhou T. Asian summer monsoon onset in simulations and CMIP5 projections using four Chinese climate models. Adv Atmos Sci 2015;32(6):794–806
https://doi.org/10.1007/s00376-014-4053-z
14 Inoue T, Ueda H. Evaluation for the seasonal evolution of the summer monsoon over the Asian and western North Pacific sector in the WCRP CMIP3 multi-model experiments. J Meteorol Soc Jpn 2009;87(3):539–60
https://doi.org/10.2151/jmsj.87.539
15 Park JY, Jhun JG, Yim SY, Kim WM. Decadal changes in two types of the western North Pacific subtropical high in boreal summer associated with Asian summer monsoon/El Niño-Southern Oscillation connections. J Geophys Res–Atmos 2010;115(D21):D21129
https://doi.org/10.1029/2009JD013642
16 He C, Zhou T, Zou L, Zhang L. Two interannual variability modes of the Northwestern Pacific subtropical anticyclone in boreal summer. Sci China Earth Sci 2013;56(7):1254–65
https://doi.org/10.1007/s11430-012-4443-y
17 Yun KS, Yeh SW, Ha KJ. Covariability of western tropical Pacific-North Pacific atmospheric circulation during summer. Sci Rep 2015;5:16980
https://doi.org/10.1038/srep16980
18 Wang B, Wu R, Fu X. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J Clim 2000;13(9):1517–36
https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
19 Wang B, Wu R, Li T. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J Clim 2003;16(8):1195–211
https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2
20 Wu B, Zhou T. Relationships between ENSO and the East Asian–western North Pacific monsoon: Observations versus 18 CMIP5 models. Clim Dynam 2016;46(3–4):729–43
https://doi.org/10.1007/s00382-015-2609-y
21 Wang B, Wu Z, Chang CP, Liu J, Li J, Zhou T. Another look at interannual-to-interdecadal variations of the East Asian winter monsoon: The northern and southern temperature modes. J Clim 2010;23(6):1495–512
https://doi.org/10.1175/2009JCLI3243.1
22 Zhang R, Sumi A, Kimoto M. A diagnostic study of the impact of El Niño on the precipitation in China. Adv Atmos Sci 1999;16(2):229–41
https://doi.org/10.1007/BF02973084
23 Wang B, Wu RG, Lukas R, An SI. A possible mechanism for ENSO turnabout. In: IAP/Academia Sinica, editor Dynamics of atmospheric general circulation and climate. Beijing: China Meteorological Press; 2001. p. 552–78.
24 Wu B, Li T, Zhou T. Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niño. J Clim 2010;23(18):4807–22
https://doi.org/10.1175/2010JCLI3222.1
25 Wu B, Li T, Zhou T. Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J Clim 2010;23(11):2974–86
https://doi.org/10.1175/2010JCLI3300.1
26 Wu B, Zhou T, Li T. Seasonally evolving dominant interannual variability modes of East Asian climate. J Clim 2009;22(11):2992–3005
https://doi.org/10.1175/2008JCLI2710.1
27 Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, et al.Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 2009;22(3):730–47
https://doi.org/10.1175/2008JCLI2544.1
28 Kamae Y, Ueda H, Kitoh A. Hadley and Walker circulations in the mid-Pliocene warm period simulated by an atmospheric general circulation model. J Meteorol Soc Jpn 2011;89(5):475–93
https://doi.org/10.2151/jmsj.2011-505
29 Sun Y, Ramstein G, Contoux C, Zhou T. A comparative study of large-scale atmospheric circulation in the context of a future scenario (RCP4.5) and past warmth (mid-Pliocene). Clim Past 2013;9(4):1613–27
https://doi.org/10.5194/cp-9-1613-2013
30 Seo KH, Frierson DMW, Son JH. A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys Res Lett 2014;41(14):5251–8
https://doi.org/10.1002/2014GL060868
31 Jiang D, Wang H, Ding Z, Lang X, Drange H. Modeling the middle Pliocene climate with a global atmospheric general circulation model. J Geophys Res –Atmos 2005;110(D14):D14107
https://doi.org/10.1029/2004JD005639
32 Zhang R, Yan Q, Zhang ZS, Jiang D, Otto-Bliesner BL, Haywood AM, et al.Mid-Pliocene East Asian monsoon climate simulated in the PlioMIP. Clim Past 2013;9(5):2085–99
https://doi.org/10.5194/cp-9-2085-2013
33 Sun Y, Zhou T, Ramstein G, Contoux C, Zhang Z. Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Clim Dynam 2016;46(5–6):1437–57. Erratum in: Clim Dynam 2016;46(5–6):2027
https://doi.org/10.1007/s00382-015-2656-4
34 Man W, Zhou T, Jungclaus JH. Simulation of the East Asian summer monsoon during the last millennium with the MPI earth system model. J Clim 2012;25(22):7852–66
https://doi.org/10.1175/JCLI-D-11-00462.1
35 Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, et al.A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 2008;322(5903):940–2
https://doi.org/10.1126/science.1163965
36 Man W, Zhou T. Regional-scale surface air temperature and East Asian summer monsoon changes during the last millennium simulated by the FGOALS-gl climate system model. Adv Atmos Sci 2014;31(4):765–78
https://doi.org/10.1007/s00376-013-3123-y
37 Man W, Zhou T. Response of the East Asian summer monsoon to large volcanic eruptions during the last millennium. Chin Sci Bull 2014;59(31):4123–9
https://doi.org/10.1007/s11434-014-0404-5
38 Cui X, Gao Y, Sun J. The response of the East Asian summer monsoon to strong tropical volcanic eruptions. Adv Atmos Sci 2014;31(6):1245–55
https://doi.org/10.1007/s00376-014-3239-8
39 Miao J, Wang T, Zhu Y, Min J, Wang H, Guo D. Response of the East Asian winter monsoon to strong tropical volcanic eruptions. J Clim 2016;29(13):5041–57
https://doi.org/10.1175/JCLI-D-15-0600.1
40 Min SK, Park EH, Kwon WT. Future projections of East Asian climate change from multi-AOGCM ensembles of IPCC SRES scenario simulations. J Meteorol Soc Jpn 2004;82(4):1187–211
https://doi.org/10.2151/jmsj.2004.1187
41 Sun Y, Ding Y. A projection of future changes in summer precipitation and monsoon in East Asia. Sci China Earth Sci 2010;53(2):284–300
https://doi.org/10.1007/s11430-009-0123-y
42 Li H, Feng L, Zhou T. Multi-model projection of July-August climate extreme changes over China under CO2 doubling. Part I: Precipitation. Adv Atmos Sci 2011;28(2):433–47
https://doi.org/10.1007/s00376-010-0013-4
43 Zou L, Zhou T. Near future (2016–40) summer precipitation changes over China as projected by a regional climate model (RCM) under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv Atmos Sci 2013;30(3):806–18
https://doi.org/10.1007/s00376-013-2209-x
44 Xin X, Zhang L, Zhang J, Wu T, Fang Y. Climate change projections over East Asia with BCC_CSM1.1 climate model under RCP scenarios. J Meteor Soc Jpn 2013;91(4):413–29
https://doi.org/10.2151/jmsj.2013-401
45 Christensen JH, Krishna Kumar K, Aldrian E, , An SI, Cavalcanti IFA, de Castro M,et al. Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al., editors Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Changes. New York: Cambridge University Press; 2013. p. 1217–308.
46 Zhou B, Xu Y, Shi Y. Present and future connection of Asian-Pacific Oscillation to large-scale atmospheric circulations and East Asian rainfall: Results of CMIP5. Clim Dynam 2017. In press
https://doi.org/10.1007/s00382-017-3579-z
47 Jiang DB, Tian ZP. East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin Sci Bull 2013;58(12):1427–35
https://doi.org/10.1007/s11434-012-5533-0
48 Wang B, Yim SY, Lee JY, Liu J, Ha KJ. Future change of Asian-Australian monsoon under RCP4.5 anthropogenic warming scenario. Clim Dynam 2014;42(1–2):83–100
https://doi.org/10.1007/s00382-013-1769-x
49 Lee JY, Wang B. Future change of global monsoon in the CMIP5. Clim Dynam 2014;42(1–2):101–19
https://doi.org/10.1007/s00382-012-1564-0
50 Kitoh A, Endo H, Krishna Kumar K, Cavalcanti IFA, Goswami P, Zhou T. Monsoons in a changing world: A regional perspective in a global context. J Geophys Res–Atmos 2013;118(8):3053–65
https://doi.org/10.1002/jgrd.50258
51 He C, Zhou T, Lin A, Wu B, Gu D, Li C, et al.Enhanced or weakened western North Pacific subtropical high under global warming? Sci Rep 2015;5:16771
https://doi.org/10.1038/srep16771
52 He C, Zhou T. Responses of the western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: The dominance of tropical Indian Ocean-tropical western Pacific SST gradient. J Clim 2015;28(1):365–80
https://doi.org/10.1175/JCLI-D-13-00494.1
53 Ogata T, Ueda H, Inoue T, Hayasaki M, Yoshida A, Watanabe S, et al.Projected future changes in the Asian monsoon: A comparison of CMIP3 and CMIP5 model results. J Meteorol Soc Jpn 2014;92(3):207–25
https://doi.org/10.2151/jmsj.2014-302
54 Ren Y, Zhou B, Song L, Xiao Y. Interannual variability of western North Pacific subtropical high, East Asian jet and East Asian summer precipitation: CMIP5 simulation and projection. Quatern Int 2017;440(Part B):64–70.
55 Li H, Feng L, Zhou T. Multi-model projection of July-August climate extreme changes over China under CO2 doubling. Part II: Temperature. Adv Atmos Sci 2011;28(2):448–63
https://doi.org/10.1007/s00376-010-0052-x
56 Chen HP. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin Sci Bull 2013;58(12):1462–72
https://doi.org/10.1007/s11434-012-5612-2
57 Wu J, Zhou BT, Xu Y. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection. Chin J Geophys 2015;58(5): 461–73
https://doi.org/10.1002/cjg2.20187
58 Wang Y, Zhou B, Qin D, Wu J, Gao R, Song L. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv Atmos Sci 2017;34(3):289–305
https://doi.org/10.1007/s00376-016-6160-5
59 Sun Y, Zhang X, Zwiers FW, Song L, Wan H, Hu T, et al.Rapid increase in the risk of extreme summer heat in eastern China. Nat Clim Chang 2014;4(12):1082–5
https://doi.org/10.1038/nclimate2410
60 Zhou B, Wen QH, Xu Y, Song L, Zhang X. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J Clim 2014;27(17):6591–611
https://doi.org/10.1175/JCLI-D-13-00761.1
61 Zhou T, Hong T. Projected changes of palmer drought severity index under an RCP8.5 scenario. Atmos Ocean Sci Lett 2013;6(5):273–8
https://doi.org/10.1080/16742834.2013.11447093
62 Chen X, Zhou T, Guo Z. Climate sensitivities of two versions of FGOALS model to idealized radiative forcing. Sci China Earth Sci 2014;57(6):1363–73
https://doi.org/10.1007/s11430-013-4692-4
63 Van Pelt SC, Beersma JJ, Buishand TA, van den Hurk BJJM, Schellekens J. Uncertainty in the future change of extreme precipitation over the Rhine basin: The role of internal climate variability. Clim Dynam 2015;44(7–8):1789–800
https://doi.org/10.1007/s00382-014-2312-4
64 Turner AG, Slingo JM. Uncertainties in future projections of extreme precipitation in the Indian monsoon region. Atmos Sci Lett 2009;10(3):152–8
https://doi.org/10.1002/asl.223
65 Chen X, Zhou T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys Res Lett 2015;42(21):9433–9
https://doi.org/10.1002/2015GL066384
66 Oh SG, Park JH, Lee SH, Suh MS. Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J Geophys Res–Atmos 2014;119(6):2913–27
https://doi.org/10.1002/2013JD020693
67 Park C, Min SK, Lee D, Cha DH, Suh MS, Kang HS, et al.Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim Dynam 2016;46(7–8):2469–86
https://doi.org/10.1007/s00382-015-2713-z
68 Niu X, Wang S, Tang J, Lee DK, Gutowski W, Dairaku K, et al.Projection of Indian summer monsoon climate in 2041–2060 by multiregional and global climate models. J Geophys Res–Atmos 2015;120(5):1776–93
https://doi.org/10.1002/2014JD022620
69 Yao S, Zhang Y. Simulation of China summer precipitation using a regional air-sea coupled model. Acta Meteorol Sin 2010;24(2):203–14.
70 Li T, Zhou G. Preliminary results of a regional air-sea coupled model over East Asia. Chin Sci Bull 2010;55(21):2295–305
https://doi.org/10.1007/s11434-010-3071-1
71 Fang Y, Zhang Y. Impacts of regional air-sea coupling on the simulation of summer precipitation over eastern China in the RIEMS model. Chin J Atmos Sci 2011;35(1):16–28. Chinese.
72 Wang HJ, Sun JQ, Chen HP, Zhu YL, Zhang Y, Jiang DB, et al.Extreme climate in China: Facts, simulation and projection. Meteorol Z 2012;21(3):279–304
https://doi.org/10.1127/0941-2948/2012/0330
73 Zou L, Zhou T. Development and evaluation of a regional ocean-atmosphere coupled model with focus on the western North Pacific summer monsoon simulation: Impacts of different atmospheric components. Sci China Earth Sci 2012;55(5):802–15
https://doi.org/10.1007/s11430-011-4281-3
74 Zou L, Zhou T. Can a regional ocean-atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon? J Clim 2013;26(7):2353–67
https://doi.org/10.1175/JCLI-D-11-00722.1
75 Zou L, Zhou T. Simulation of the western North Pacific summer monsoon by regional ocean-atmosphere coupled model: Impacts of oceanic components. Chin Sci Bull 2014;59(7):662–73
https://doi.org/10.1007/s11434-013-0104-6
76 Cha DH, Jin CS, Moon JH, Lee DK. Improvement of regional climate simulation of East Asian summer monsoon by coupled air-sea interaction and large-scale nudging. Int J Climatol 2016;36(1):334–45
https://doi.org/10.1002/joc.4349
77 Ham S, Yoshimura K, Li H. Historical dynamical downscaling for East Asia with the atmosphere and ocean coupled regional model. J Meteorol Soc Jpn 2016;94A:199–208
https://doi.org/10.2151/jmsj.2015-046
78 Zou L, Zhou T, Peng D. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean atmosphere coupled model to stand-alone RCM simulations. J Geophys Res– Atmos 2016;121(4):1442–58
https://doi.org/10.1002/2015JD023912
79 Zou L, Zhou T. Future summer precipitation changes over CORDEX-East Asia domain downscaled by a regional ocean-atmosphere coupled model: A comparison to the stand-alone RCM. J Geophys Res– Atmos 2016;121(6):2691–704
https://doi.org/10.1002/2015JD024519
[1] Xuejie Gao, Filippo Giorgi. Use of the RegCM System over East Asia: Review and Perspectives[J]. Engineering, 2017, 3(5): 766-772.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering