Please wait a minute...
投稿  |   English  | 
 
高级检索
   首页  |  最新收录  |  当期目录  |  过刊浏览  |  作者中心  |  关于期刊   开放获取  
投稿  |   English  | 
Engineering    2017, Vol. 3 Issue (5) : 701-707     https://doi.org/10.1016/J.ENG.2017.05.021
Research |
电子束选区熔化过程的建模研究及实验验证
闫文韬1,2,钱亚1,马维馨3,周斌1,沈泳星3,林峰1()
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201, USA
3. State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(3552 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     支持信息
文章导读  
摘要 
电子束选区熔化技术(EBSM)是一种很有潜力的增材制造(AM)技术。EBSM 由三个主要步骤组成:铺设粉层、预热至粉末略烧结和选区熔化粉末床。这些步骤中涉及高度瞬态多物理场现象,给原位实验的观察和测量带来了重大挑战。利用了高保真模型和后处理实验,来增强对各个步骤中物理机制的理解。模型模拟了实际制造过程,包括:使用离散元法(DEM)的铺粉模型、粉末烧结(固态烧结)的相场(PF)模型和使用有限体积法(FVM)的粉末熔化(液态烧结)模型。本文对所有主要步骤进行了全面的分析,这些分析很少有人报道过。初步模拟结果(包括粉末颗粒在粉末床内的堆积、颗粒之间烧结颈的形成和单道成形缺陷)与实验结果基本一致,表明该模型可以诠释所述机制,并能够指导实验设置和制造过程的设计和优化。
关键词 建模电子束增材制造粉末尺度    
Abstract

Electron beam selective melting (EBSM) is a promising additive manufacturing (AM) technology. The EBSM process consists of three major procedures: ① spreading a powder layer, ② preheating to slightly sinter the powder, and ③ selectively melting the powder bed. The highly transient multi-physics phenomena involved in these procedures pose a significant challenge for in situ experimental observation and measurement. To advance the understanding of the physical mechanisms in each procedure, we leverage high-fidelity modeling and post-process experiments. The models resemble the actual fabrication procedures, including ① a powder-spreading model using the discrete element method (DEM), ② a phase field (PF) model of powder sintering (solid-state sintering), and ③ a powder-melting (liquid-state sintering) model using the finite volume method (FVM). Comprehensive insights into all the major procedures are provided, which have rarely been reported. Preliminary simulation results (including powder particle packing within the powder bed, sintering neck formation between particles, and single-track defects) agree qualitatively with experiments, demonstrating the ability to understand the mechanisms and to guide the design and optimization of the experimental setup and manufacturing process.

Keywords Modeling      Electron beam      Additive manufacturing      Powder scale     
基金资助: 
在线预览日期:    发布日期: 2017-11-08
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Wentao Yan
Ya Qian
Weixin Ma
Bin Zhou
Yongxing Shen
Feng Lin
引用本文:   
Wentao Yan,Ya Qian,Weixin Ma, et al. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701-707.
网址:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.05.021     OR     http://engineering.org.cn/EN/Y2017/V3/I5/701
Fig.1  Experiments and models of all procedures in the EBSM process. DEM: discrete element method; PF: phase field; FVM: finite volume method.
Fig.2  Schematic of the fields in the PF model.
Fig.3  The in-house EBSM system. (a) Schematic; (b) photograph.
Fig.4  Experimental and simulation results of powder spreading. (a) Simulations can guide the design and optimization of the (b) powder rake; (c) simulation and (d) experimental results of spreading a powder layer over previous layers.
Fig.5  Powder-spreading simulation results at various rake speeds.
Fig.6  Experimental and simulation results of powder sintering. (a), (b) two powder particles with different sizes; (c), (d) two powder particles with similar sizes.
Property Value Unit
Grain boundary mobility, ϑ gb 10-11 m4·(J·s)-1
Grain boundary energy, γ gb [ 14] 0.81 J·m-2
Surface energy, γ sf [ 14] 2.1 J·m-2
Volume diffusion, Q υ [ 15] 3.2?×?10-19 J
Surface diffusion, D O υ [ 15] 2.92?×?10-19 m2·s-1
Surface diffusion coefficient, D eff s [ 16] 2?×?10-9 m2·s-1
Preheating temperature, T 1100 °C
Tab.1  Material parameters applied in the powder-sintering simulation.
Fig.7  Simulation result of an electron beam heating a spherical powder particle on a substrate. (a) Schematic; (b) simulated.
Fig.8  Experimental and simulation results of (a) and (c) balling effect; and (b) and (d) single-track non-uniformity [13].
1 Yang L, Harrysson O, West H, Cormier D. Compressive properties of Ti–6Al–4V auxetic mesh structures made by electron beam melting. Acta Mater 2012;60(8):3370–9
https://doi.org/10.1016/j.actamat.2012.03.015
2 Ge W, Lin F, Guo C. Functional gradient material of Ti-6Al-4V and γ-TiAl fabricated by electron beam selective melting. In: Proceedings: 26th Annual International Solid Freeform Fabrication Symposium—An additive manufacturing conference; 2015 Aug 10–12; Austin, Texas; 2015. p. 602–13.
3 Ge W, Guo C, Lin F. Microstructures of components synthesized via electron beam selective melting using blended pre-alloyed powders of Ti6Al4V and Ti45Al7Nb. Rare Met Mater Eng 2015;44(11):2623–7
https://doi.org/10.1016/S1875-5372(16)60006-1
4 Guo C, Ge W, Lin F. Dual-material electron beam selective melting: Hardware development and validation studies. Engineering 2015;1(1):124–30
https://doi.org/10.15302/J-ENG-2015013
5 Körner C, Bauereiß A, Attar E. Fundamental consolidation mechanisms during selective beam melting of powders. Model Simul Mater Sci Eng 2013;21(8):085011
https://doi.org/10.1088/0965-0393/21/8/085011
6 Khairallah SA, Anderson AT, Rubenchik A, King WE. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 2016;108:36–45
https://doi.org/10.1016/j.actamat.2016.02.014
7 King W, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater Sci Technol 2015;31(8):957–68
https://doi.org/10.1179/1743284714Y.0000000728
8 Qiu C, Panwisawas C, Ward M, Basoalto HC, Brooks JW, Attallah MM. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 2015;96:72–9
https://doi.org/10.1016/j.actamat.2015.06.004
9 Cahn JW, Hilliard JE. Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 1958;28(2):258–67
https://doi.org/10.1063/1.1744102
10 Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, et al.The FEniCS Project version 1.5. Arch Numer Softw 2015;3(100):9–23.
11 Yan W, Smith J, Ge W, Lin F, Liu WK. Multiscale modeling of electron beam and substrate interaction: A new heat source model. Comput Mech 2015;56(2):265–76
https://doi.org/10.1007/s00466-015-1170-1
12 Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, et al.Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 2016;115:403–12
https://doi.org/10.1016/j.actamat.2016.06.022
13 Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, et al.Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 2017;134:324–33. doi:
https://doi.org/10.1016/j.actamat.2017.05.061
14 Roth TA, Suppayak P. The surface and grain boundary free energies of pure titanium and the titanium alloy Ti–6Al–4V. Mater Sci Eng 1978;35(2):187–96
https://doi.org/10.1016/0025-5416(78)90120-9
15 Nemat-Nasser S, Guo WG, Cheng JY. Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater 1999;47(13):3705–20
https://doi.org/10.1016/S1359-6454(99)00203-7
16 Sushko GB, Verkhovtsev AV, Yakubovich AV, Schramm S, Solov’yov AV. Molecular dynamics simulation of self-diffusion processes in titanium in bulk material, on grain junctions and on surface. J Phys Chem A 2014;118(33):6685–91
https://doi.org/10.1021/jp503777q pmid: 24956031
17 Barkhudarov MR. Lagrangian VOF advection method for FLOW-3D®. Leland: Flow Science, Inc.; 2004 Jun. Report No.: FSI-03-TN63-R.
[1] Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering, 2018, 4(2): 277-285.
[2] Wenke Huang, Mingwei Hu. Estimation of the Impact of Traveler Information Apps on Urban Air Quality Improvement[J]. Engineering, 2018, 4(2): 224-229.
[3] Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695-700.
[4] Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648-652.
[5] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685-694.
[6] Dongdong Gu, Chenglong Ma, Mujian Xia, Donghua Dai, Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675-684.
[7] Han-Xiong Li, Haitao Si. Control for Intelligent Manufacturing: A Multiscale Challenge[J]. Engineering, 2017, 3(5): 608-615.
[8] Zhen Zhang, Peng Yan, Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708-715.
[9] Amelia Yilin Lee, Jia An, Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663-674.
[10] Francesco Rossi, Simone Colombo, Sauro Pierucci, Eliseo Ranzi, Flavio Manenti. Upstream Operations in the Oil Industry: Rigorous Modeling of an Electrostatic Coalescer[J]. Engineering, 2017, 3(2): 220-231.
[11] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250-257.
[12] Jun Yang,Yang Yang,Zhizhu He,Bowei Chen,Jing Liu. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future[J]. Engineering, 2015, 1(4): 506-512.
[13] Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261-268.
[14] Chao Guo, Wenjun Ge, Feng Lin. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies[J]. Engineering, 2015, 1(1): 124-130.
[15] Brian Derby. Additive Manufacture of Ceramics Components by Inkjet Printing[J]. Engineering, 2015, 1(1): 113-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
国内刊号:CN10-1244/N    国际刊号:ISSN2095-8099
版权所有 © 2015 高等教育出版社  《中国工程科学》杂志社
京ICP备11030251号-2

 Engineering