Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2016, Vol. 2 Issue (4) : 490 -497     DOI: 10.1016/J.ENG.2016.04.003
Research |
The Cemented Material Dam: A New, Environmentally Friendly Type of Dam
Jinsheng Jia1,(),Michel Lino2,Feng Jin3,Cuiying Zheng1
1. China Institute of Water Resources and Hydropower Research, Beijing 100038, China
2. ISL Ingénierie, Saint-Jean-de-Luz 64500, France
3. Tsinghua University, Beijing 100084, China
Abstract
Abstract  

The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area downstream. The concept covers the cemented sand, gravel, and rock dam (CSGRD), the rockfill concrete (RFC) dam (or the cemented rockfill dam, CRD), and the cemented soil dam (CSD). This paper summarizes the concept and principles of the CMD based on studies and practices in projects around the world. It also introduces new developments in the CSGRD, CRD, and CSD.

Keywords Cemented material dam (CMD)      Cemented sand      gravel      and rock dam (CSGRD)      Rockfill concrete (RFC) dam      Cemented rockfill dam (CRD)      Cemented soil dam (CSD)      Material properties     
Fund: 
Corresponding Authors: Jinsheng Jia   
Just Accepted Date: 17 October 2016   Online First Date: 24 November 2016    Issue Date: 28 December 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinsheng Jia
Michel Lino
Feng Jin
Cuiying Zheng
Cite this article:   
Jinsheng Jia,Michel Lino,Feng Jin, et al. The Cemented Material Dam: A New, Environmentally Friendly Type of Dam[J]. Engineering, 2016, 2(4): 490 -497 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2016.04.003     OR     http://engineering.org.cn/EN/Y2016/V2/I4/490
References
1   Xie JB, Sun DY. Statistics of dam failures in China and analysis on failure causations. Water Resour Hydropower Eng 2009;40(12):124–8.
2   Chen HQ. Consideration on seismic safety of dams in China after the Wenchuan Earthquake. Eng Sci 2009;11(6):44–53.
3   Raphaël JM. The optimum gravity dam. In: Proceedings of Conference on Rapid Construction of Concrete Dams; 1970 Mar 1–5; Pacific Grove, CA, USA. New York: ASCE; 1970. p. 221–44.
4   Londe P, Lino M. The faced symmetrical hardfill dam: a new concept for RCC. Int Water Power Dams Constr 1992;44(2):19–24.
5   ICOLD.Bulletin 117: the gravity dam: a dam for the future-review and recommendations.Paris: International Commission on Large Dams; 2000.
6   Batmaz S, Koksal A, Ergeneman I, Pekcagliyan MD. Design of the 100 m-high Oyuk hardfill dam. Int J Hydropower Dams 2003;10(5):138–42.
7   Batmaz S. Cindere dam-107 m high roller compacted hardfill dam (RCHD) in Turkey. In: Berga L, Buil JM, Jofre C, Chonggang S, editors Proceedings of the 4th International Symposium on Roller Compacted Concrete Dams; 2003 Nov 11–19; Madrid, Spain. Boca Raton: CRC Press; 2003. p. 121–6.
8   Mason PJ, Hughes RAN, Molyneux JD. The design and construction of a faced symmetrical hardfill dam. Int J Hydropower Dams 2008;15(3):90–4.
9   Takashi Y, Yoshio O, Mikio K. Application of CSG method to construction of gravity dam. In: Proceedings of 20th ICOLD Congress; 2000 Sep 19–22; Beijing, China; 2000. p. 989–1007.
10   Hirose T, Fujisawa T, Nagayama I, Yoshida H, Sasaki T. Design criteria for trapezoid-shaped CSG dams. In: Proceedings of the 69th ICOLD Annual Meeting; 2001 Sep 9–15; Dresden, Germany; 2001.
11   Okamura H, Ouchi M. Self-compacting concrete. J Adv Concrete Technol 2003;1(1):5–15
doi: 10.3151/jact.1.5
12   Jia JS, Ma FL, Li XY, Chen ZP. CSGR dam: material property studies and engineering application. J Hydraul Eng 2006;37(5):578–82. Chinese.
13   Jia JS, Zheng GY, Ma FL. Studies on cemented material dam and its application in China. In: Proceedings of the 6th International Symposium on Roller Compacted Dams; 2012 Oct 23–25; Zaragoza, Spain; 2012.
14   Liu N, Jia JS, Liu ZM, Jia F; Ministry of Water Resources of the People’s Republic of China. SL 678–2014 Technical guideline for cemented granular material dams.Beijing: China Water & Power Press; 2014. Chinese.
15   Jin F, An XH, Shi JJ, Zhang CH. Study on rock-filled concrete dam. J Hydraul Eng 2005;36(11):1347–52. Chinese.
16   de Collectif. Le béton compacté au rouleau: Les barrages en BCR: projet national BaCaRa 1988–1995.Paris: Presses des Ponts et Chaussées; 1996. French.
17   Herrier G, Puiatti D, Bonelli S, Fry JJ, Nerincx N, Froumentin M. Le traitement des sols à la chaux: une technique innovante pour la construction des ouvrages hydrauliques en terre. In: Proceedings of the 25th ICOLD Congress (Q96, R39); 2015 Jun 13–20; Stavanger, Norway; 2015. French.
18   Laboratoire central des ponts et chaussées;France, Service d’études sur les transports, les routes et leurs aménagements. Soil treatment with lime and/or hydraulic binders: application to the construction of fills and capping layers. Paris: Laboratoire central des ponts et chaussées; 2000. French.
Related
[1] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[2] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[3] Jian-Feng Chen. Green Chemical Engineering for a Better Life[J]. Engineering, 2017, 3(3): 279 .
[4] Vassilis M. Charitopoulos, Lazaros G. Papageorgiou, Vivek Dua. Nonlinear Model-Based Process Operation under Uncertainty Using Exact Parametric Programming[J]. Engineering, 2017, 3(2): 202 -213 .
[5] Pedro A. Castillo Castillo, Pedro M. Castro, Vladimir Mahalec. Global Optimization of Nonlinear Blend-Scheduling Problems[J]. Engineering, 2017, 3(2): 188 -201 .
[6] Francesco Rossi, Simone Colombo, Sauro Pierucci, Eliseo Ranzi, Flavio Manenti. Upstream Operations in the Oil Industry: Rigorous Modeling of an Electrostatic Coalescer[J]. Engineering, 2017, 3(2): 220 -231 .
[7] Feng Qian, Weimin Zhong, Wenli Du. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry[J]. Engineering, 2017, 3(2): 154 -160 .
[8] Yihui Ding, Ping Wu, Yanju Liu, Yafang Song. Environmental and Dynamic Conditions for the Occurrence of Persistent Haze Events in North China[J]. Engineering, 2017, 3(2): 266 -271 .
[9] Xiaobo Luo, Meihong Wang. Improving Prediction Accuracy of a Rate-Based Model of an MEA-Based Carbon Capture Process for Large-Scale Commercial Deployment[J]. Engineering, 2017, 3(2): 232 -243 .
[10] Jinliang Ding, Cuie Yang, Tianyou Chai. Recent Progress on Data-Based Optimization for Mineral Processing Plants[J]. Engineering, 2017, 3(2): 183 -187 .
[11] Zhihong Yuan, Weizhong Qin, Jinsong Zhao. Smart Manufacturing for the Oil Refining and Petrochemical Industry[J]. Engineering, 2017, 3(2): 179 -182 .
[12] Ian David Lockhart Bogle. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers[J]. Engineering, 2017, 3(2): 161 -165 .
[13] Mariano Martín. Artificial versus Natural Reuse of CO2 for DME Production: Are We Any Closer?[J]. Engineering, 2017, 3(2): 166 -170 .
[14] Yun Gao, Xiang Gao, Xiaohua Zhang. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Changeto the Paris Agreement[J]. Engineering, 2017, 3(2): 272 -278 .
[15] Shabnam Sedghi, Biao Huang. Real-Time Assessment and Diagnosis of Process Operating Performance[J]. Engineering, 2017, 3(2): 214 -219 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2

 Engineering