Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2016, Vol. 2 Issue (4) : 438 -446     DOI: 10.1016/J.ENG.2016.04.017
Research |
Advances in Energy-Producing Anaerobic Biotechnologies for Municipal Wastewater Treatment
Wen-Wei Li,Han-Qing Yu()
CAS Key Laboratory of Urban Pollutants Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
Abstract
Abstract  

Municipal wastewater treatment has long been known as a high-cost and energy-intensive process that destroys most of the energy-containing molecules by spending energy and that leaves little energy and few nutrients available for reuse. Over the past few years, some wastewater treatment plants have tried to revamp themselves as “resource factories,” enabled by new technologies and the upgrading of old technologies. In particular, there is an renewed interest in anaerobic biotechnologies, which can convert organic matter into usable energy and preserve nutrients for potential reuse. However, considerable technological and economic limitations still exist. Here, we provide an overview of recent advances in several cutting-edge anaerobic biotechnologies for wastewater treatment, including enhanced side-stream anaerobic sludge digestion, anaerobic membrane bioreactors, and microbial electrochemical systems, and discuss future challenges and opportunities for their applications. This review is intended to provide useful information to guide the future design and optimization of municipal wastewater treatment processes.

Keywords Anaerobic      Energy      Membrane bioreactor      Microbial electrochemical system      Municipal wastewater treatment     
Fund: 
Corresponding Authors: Han-Qing Yu   
Just Accepted Date: 20 December 2016   Online First Date: 27 December 2016    Issue Date: 28 December 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Wei Li
Han-Qing Yu
Cite this article:   
Wen-Wei Li,Han-Qing Yu. Advances in Energy-Producing Anaerobic Biotechnologies for Municipal Wastewater Treatment[J]. Engineering, 2016, 2(4): 438 -446 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2016.04.017     OR     http://engineering.org.cn/EN/Y2016/V2/I4/438
References
1   Tchobanoglous G, Stensel HD, Tsuchihashi R, Burton F. Wastewater engineering: treatment and resource recovery. Metcalf E, Eddy M, editors. New York: McGraw-Hill; 2014.
2   Bemberis I, Hubbard PJ, Leonard FB. Membrane sewage treatment systems—potential for complete wastewater treatment. In: Proceedings of Specialty Conference on Drainage Materials and Annual Winter Meeting; 1971 Dec 6–10; Chicago, USA. St. Joseph: American Society of Agricultural Engineers; 1971. p. 1–28.
3   Morgenroth E, Sherden T, van Loosdrecht MCM, Heijnen JJ, Wilderer PA. Aerobic granular sludge in a sequencing batch reactor. Water Res 1997;31(12):3191–4
doi: 10.1016/S0043-1354(97)00216-9
4   van Loosdrecht MCM, Brdjanovic D. Anticipating the next century of wastewater treatment. Science 2014;344(6191):1452–3
doi: 10.1126/science.1255183
5   Guest JS, Skerlos SJ, Barnard JL, Beck MB, Daigger GT, Hilger H, A new planning and design paradigm to achieve sustainable resource recovery from wastewater. Environ Sci Technol 2009;43(16):6126–30
doi: 10.1021/es9010515
6   McCarty PL, Bae J, Kim J. Domestic wastewater treatment as a net energy producer—can this be achieved? Environ Sci Technol 2011;45(17):7100–6
doi: 10.1021/es2014264
7   Li W, Yu H, Rittmann BE. Chemistry: reuse water pollutants. Nature 2015;528(7580):29–31
doi: 10.1038/528029a
8   van Lier JB. High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Sci Technol 2008;57(8):1137–48
doi: 10.2166/wst.2008.040
9   Batstone DJ, Hülsen T, Mehta CM, Keller J. Platforms for energy and nutrient recovery from domestic wastewater: a review. Chemosphere 2015;140:2–11
doi: 10.1016/j.chemosphere.2014.10.021
10   Abbasi T, Tauseef SM, Abbasi SA. Anaerobic digestion for global warming control and energy generation—an overview. Renew Sust Energ Rev 2012;16(5):3228–42
doi: 10.1016/j.rser.2012.02.046
11   Verstraete W, Van de Caveye P, Diamantis V. Maximum use of resources present in domestic “used water”. Bioresour Technol 2009;100(23):5537–45
doi: 10.1016/j.biortech.2009.05.047
12   Batstone DJ, Virdis B. The role of anaerobic digestion in the emerging energy economy. Curr Opin Biotechnol 2014;27(6):142–9
doi: 10.1016/j.copbio.2014.01.013
13   Gao H, Scherson YD, Wells GF. Towards energy neutral wastewater treatment: methodology and state of the art. Environ Sci Process Impacts 2014;16(6):1223–46
doi: 10.1039/c4em00069b
14   Liu S, Ni B, Li W, Sheng G, Tang Y, Yu H. Modeling of the contact-adsorption-regeneration (CAR) activated sludge process. Bioresour Technol 2011; 102(3):2199–205
doi: 10.1016/j.biortech.2010.10.003
15   Willis J, editor. Assessment of technology advancements for future energy reduction. Alexandria: Water Environment Reuse Foundation; 2016.
16   Mehdizadeh SN, Eskicioglu C, Bobowski J, Johnson T. Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge. Water Res 2013;47(14):5040–51
doi: 10.1016/j.watres.2013.05.055
17   Cano R, Pérez-Elvira SI, Fdz-Polanco F. Energy feasibility study of sludge pretreatments: a review. Appl Energ 2015;149:176–85
doi: 10.1016/j.apenergy.2015.03.132
18   Wickham R, Galway B, Bustamante H, Nghiem LD. Biomethane potential evaluation of co-digestion of sewage sludge and organic wastes. Int Biodeterior Biodegrad 2016;113:3–8
doi: 10.1016/j.ibiod.2016.03.018
19   Di Maria F, Micale C, Contini S. Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective. Appl Energ 2016;171:67–76
doi: 10.1016/j.apenergy.2016.03.036
20   Bisogni JJ Jr, Lawrence AW. Relationships between biological solids retention time and settling characteristics of activated sludge. Water Res 1971;5(9):753–63
doi: 10.1016/0043-1354(71)90098-4
21   Wang Z, Wu Z, Hua J, Wang X, Du X, Hua H. Application of flat-sheet membrane to thickening and digestion of waste activated sludge (WAS). J Hazard Mater 2008;154(1–3):535–42
doi: 10.1016/j.jhazmat.2007.10.057
22   Kim HG, Chung TH. Performance of the sludge thickening and reduction at various factors in a pilot-scale MBR. Separ Purif Technol 2013;104(5):297–306
doi: 10.1016/j.seppur.2012.11.008
23   Xia A, Murphy JD. Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol 2016;34(4):264–75
doi: 10.1016/j.tibtech.2015.12.010
24   Mills N, Pearce P, Farrow J, Thorpe RB, Kirkby NF. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manag 2014;34(1):185–95
doi: 10.1016/j.wasman.2013.08.024
25   Pretel R, Durán F, Robles A, Ruano MV, Ribes J, Serralta J, . Designing an AnMBR-based WWTP for energy recovery from urban wastewater: the role of primary settling and anaerobic digestion. Separ Purif Technol 2015;156(Part 2):132–9
doi: 10.1016/j.seppur.2015.09.047
26   Smith AL, Skerlos SJ, Raskin L. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Res 2013;47(4):1655–65
doi: 10.1016/j.watres.2012.12.028
27   Smith AL, Stadler LB, Cao L, Love NG, Raskin L, Skerlos SJ. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ Sci Technol 2014;48(10):5972–81
doi: 10.1021/es5006169
28   Ozgun H, Tao Y, Ersahin ME, Zhou Z, Gimenez JB, Spanjers H, . Impact of temperature on feed-flow characteristics and filtration performance of an upflow anaerobic sludge blanket coupled ultrafiltration membrane treating municipal wastewater. Water Res 2015;83:71–83
doi: 10.1016/j.watres.2015.06.035
29   Lettinga G, Rebac S, Zeeman G. Challenge of psychrophilic anaerobic wastewater treatment. Trends Biotechnol 2001;19(9):363–70
doi: 10.1016/S0167-7799(01)01701-2
30   Martinez-Sosa D, Helmreich B, Netter T, Paris S, Bischof F, Horn H. Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresour Technol 2011;102(22):10377–85
doi: 10.1016/j.biortech.2011.09.012
31   Yoo RH, Kim JH, McCarty PL, Bae JH. Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor. Water Sci Technol 2014;69(6):1145–50
doi: 10.2166/wst.2013.793
32   Gouveia J, Plaza F, Garralon G, Fdz-Polanco F, Peña M. Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioresour Technol 2015;185:225–33
doi: 10.1016/j.biortech.2015.03.002
33   Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB. A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Separ Purif Technol 2013;118:89–104
doi: 10.1016/j.seppur.2013.06.036
34   Liao BQ, Kraemer JT, Bagley DM. Anaerobic membrane bioreactors: applications and research directions. Crit Rev Environ Sci Technol 2006;36(6):489–530
doi: 10.1080/10643380600678146
35   Gao D, Hu Q, Yao C, Ren N. Treatment of domestic wastewater by an integrated anaerobic fluidized-bed membrane bioreactor under moderate to low temperature conditions. Bioresour Technol 2014;159:193–8
doi: 10.1016/j.biortech.2014.02.086
36   Ozgun H, Ersahin ME, Tao Y, Spanjers H, van Lier JB. Effect of upflow velocity on the effluent membrane fouling potential in membrane coupled upflow anaerobic sludge blanket reactors. Bioresour Technol 2013;147:285–92
doi: 10.1016/j.biortech.2013.08.039
37   Chu L, Yang F, Zhang X. Anaerobic treatment of domestic wastewater in a membrane-coupled expended granular sludge bed (EGSB) reactor under moderate to low temperature. Process Biochem 2005;40(3–4):1063–70
doi: 10.1016/j.procbio.2004.03.010
38   Gouveia J, Plaza F, Garralon G, Fdz-Polanco F, Peña M. A novel configuration for an anaerobic submerged membrane bioreactor (AnSMBR). Long-term treatment of municipal wastewater under psychrophilic conditions. Bioresour Technol 2015;198:510–9
doi: 10.1016/j.biortech.2015.09.039
39   Judd S, Judd C, editors. Principles and applications of membrane bioreactors in water and wastewater treatment. 2nd ed. Burlington: Butterworth-Heinemann; 2011.
40   Li W, Yu H. Anaerobic granule technologies for hydrogen recovery from wastes: the way forward. Crit Rev Environ Sci Technol 2013;43(12):1246–80
doi: 10.1080/10643389.2011.644218
41   Shin C, Bae J, McCarty PL. Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor. Bioresour Technol 2012;109:13–20
doi: 10.1016/j.biortech.2012.01.014
42   Yoo R, Kim J, McCarty PL, Bae J. Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system. Bioresour Technol 2012;120:133–9
doi: 10.1016/j.biortech.2012.06.028
43   Kim J, Kim K, Ye H, Lee E, Shin C, McCarty PL, . Anaerobic fluidized bed membrane bioreactor for wastewater treatment. Environ Sci Technol 2011;45(2):576–81
doi: 10.1021/es1027103
44   Shin C, McCarty PL, Kim J, Bae J. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresour Technol 2014;159:95–103
doi: 10.1016/j.biortech.2014.02.060
45   Hahn MJ, Figueroa LA. Pilot scale application of anaerobic baffled reactor for biologically enhanced primary treatment of raw municipal wastewater. Water Res 2015;87:494–502
doi: 10.1016/j.watres.2015.09.027
46   Liu J, Jia X, Gao B, Bo L, Wang L. Membrane fouling behavior in anaerobic baffled membrane bioreactor under static operating condition. Bioresour Technol 2016;214:582–8
doi: 10.1016/j.biortech.2016.05.016
47   Kola A, Ye Y, Le-Clech P, Chen V. Transverse vibration as novel membrane fouling mitigation strategy in anaerobic membrane bioreactor applications. J Membr Sci 2014;455:320–9
doi: 10.1016/j.memsci.2013.12.078
48   Yu Z, Song Z, Wen X, Huang X. Using polyaluminum chloride and polyacrylamide to control membrane fouling in a cross-flow anaerobic membrane bioreactor. J Membr Sci 2015;479:20–7
doi: 10.1016/j.memsci.2015.01.016
49   Teo CW, Wong PCY. Enzyme augmentation of an anaerobic membrane bioreactor treating sewage containing organic particulates. Water Res 2014;48:335–44
doi: 10.1016/j.watres.2013.09.041
50   Kim J, Shin J, Kim H, Lee JY, Yoon MH, Won S, . Membrane fouling control using a rotary disk in a submerged anaerobic membrane sponge bioreactor. Bioresour Technol 2014;172:321–7
doi: 10.1016/j.biortech.2014.09.013
51   Jaffrin MY. Dynamic filtration with rotating disks, and rotating and vibrating membranes: an update. Curr Opin Chem Eng 2012;1(2):171–7
doi: 10.1016/j.coche.2012.01.002
52   Ruigómez I, Vera L, González E, González G, Rodríguez-Sevilla J. A novel rotating HF membrane to control fouling on anaerobic membrane bioreactors treating wastewater. J Membr Sci 2016;501:45–52
doi: 10.1016/j.memsci.2015.12.011
53   Liu L, Liu J, Gao B, Yang F, Chellam S. Fouling reductions in a membrane bioreactor using an intermittent electric field and cathodic membrane modified by vapor phase polymerized pyrrole. J Membr Sci 2012;394–5:202–8
doi: 10.1016/j.memsci.2011.12.042
54   Katuri KP, Werner CM, Jimenez-Sandoval RJ, Chen W, Jeon S, Logan BE, . A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. Environ Sci Technol 2014;48(21):12833–41
doi: 10.1021/es504392n
55   Akamatsu K, Lu W, Sugawara T, Nakao S. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field. Water Res 2010;44(3):825–30
doi: 10.1016/j.watres.2009.10.026
56   Werner CM, Katuri KP, Hari AR, Chen W, Lai Z, Logan BE, . Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors—effect of configuration and applied voltage on performance and membrane fouling. Environ Sci Technol 2016;50(8):4439–47
doi: 10.1021/acs.est.5b02833
57   Wong PCY, Lee JY, Teo CW. Application of dispersed and immobilized hydrolases for membrane fouling mitigation in anaerobic membrane bioreactors. J Membr Sci 2015;491:99–109
doi: 10.1016/j.memsci.2015.05.022
58   Kim SR, Oh HS, Jo SJ, Yeon KM, Lee CH, Lim DJ, . Biofouling control with bead-entrapped quorum quenching bacteria in membrane bioreactors: physical and biological effects. Environ Sci Technol 2013;47(2):836–42
doi: 10.1021/es303995s
59   Lee S, Park SK, Kwon H, Lee SH, Lee K, Nahm CH, . Crossing the border between laboratory and field: bacterial quorum quenching for anti-biofouling strategy in an MBR. Environ Sci Technol 2016;50(4):1788–95
doi: 10.1021/acs.est.5b04795
60   Smith AL, Stadler LB, Love NG, Skerlos SJ, Raskin L. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: a critical review. Bioresour Technol 2012;122:149–59
doi: 10.1016/j.biortech.2012.04.055
61   Cookney J, McLeod A, Mathioudakis V, Ncube P, Soares A, Jefferson B, . Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. J Membr Sci 2016;502:141–50
doi: 10.1016/j.memsci.2015.12.037
62   Eastern Research Group, Inc., Resource Dynamics Corporation. Opportunities for combined heat and power at wastewater treatment facilities: market analysis and lessons from the field. Report. Washington, DC: US Environmental Protection Agency; 2011 Oct.
63   Cookney J, Cartmell E, Jefferson B, McAdam EJ. Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors. Water Sci Technol 2012;65(4):604–10
doi: 10.2166/wst.2012.897
64   Bandara WM, Satoh H, Sasakawa M, Nakahara Y, Takahashi M, Okabe S. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. Water Res 2011;45(11):3533–40
doi: 10.1016/j.watres.2011.04.030
65   Goh S, Zhang J, Liu Y, Fane AG. Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation. Desalination 2013;323:39–47
doi: 10.1016/j.desal.2012.12.001
66   McLeod A, Jefferson B, McAdam EJ. Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase. J Membr Sci 2016;510:466–71
doi: 10.1016/j.memsci.2016.03.030
67   Harnisch F, Schröder U. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 2010;39(11):4433–48
doi: 10.1039/c003068f
68   Liu X, Li W, Yu H. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem Soc Rev 2014;43(22):7718–45
doi: 10.1039/C3CS60130G
69   Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 2009;7(5):375–81
doi: 10.1038/nrmicro2113
70   Yu J, Seon J, Park Y, Cho S, Lee T. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. Bioresour Technol 2012;117:172–9
doi: 10.1016/j.biortech.2012.04.078
71   Sun M, Zhai L, Li W, Yu H. Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chem Soc Rev 2016;45(10):2847–70
doi: 10.1039/C5CS00903K
72   Li W, Yu H, He Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energ Environ Sci 2014;7(3):911–24
doi: 10.1039/C3EE43106A
73   Logan BE. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 2010;85(6):1665–71
doi: 10.1007/s00253-009-2378-9
74   Heidrich ES, Edwards SR, Dolfing J, Cotterill SE, Curtis TP. Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period. Bioresour Technol 2014;173:87–95
doi: 10.1016/j.biortech.2014.09.083
75   Feng Y, He W, Liu J, Wang X, Qu Y, Ren N. A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol 2014;156:132–8
doi: 10.1016/j.biortech.2013.12.104
76   Wu S, Li H, Zhou X, Liang P, Zhang X, Jiang Y, . A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res 2016;98:396–403
doi: 10.1016/j.watres.2016.04.043
77   Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS, Diels L, . Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2012;2(4):1248–63
doi: 10.1039/C1RA00839K
78   Premier GC, Kim JR, Massanet-Nicolau J, Kyazze G, Esteves SRR, Penumathsa BKV, . Integration of biohydrogen, biomethane and bioelectrochemical systems. Renew Energy 2013;49:188–92
doi: 10.1016/j.renene.2012.01.035
79   Weld RJ, Singh R. Functional stability of a hybrid anaerobic digester/microbial fuel cell system treating municipal wastewater. Bioresour Technol 2011; 102(2):842–7
doi: 10.1016/j.biortech.2010.09.002
80   Wang H, Qu Y, Li D, Zhou X, Feng Y. Evaluation of an integrated continuous stirred microbial electrochemical reactor: wastewater treatment, energy recovery and microbial community. Bioresour Technol 2015;195:89–95
doi: 10.1016/j.biortech.2015.06.039
81   Liu D, Zhang L, Chen S, Buisman C, ter Heijne A. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C. Water Res 2016;99:281–7
doi: 10.1016/j.watres.2016.04.020
82   Rabaey K, Rozendal RA. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 2010;8(10):706–16
doi: 10.1038/nrmicro2422
83   Ren L, Ahn Y, Logan BE. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment. Environ Sci Technol 2014;48(7):4199–206
doi: 10.1021/es500737m
84   An J, Kim B, Chang IS, Lee HS. Shift of voltage reversal in stacked microbial fuel cells. J Power Sources 2015;278:534–9
doi: 10.1016/j.jpowsour.2014.12.112
85   Li H, editor. Global trends & challenges in water science, research and management. London: International Water Association; 2016.
86   Gong Y, Radachowsky SE, Wolf M, Nielsen ME, Girguis PR, Reimers CE. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ Sci Technol 2011;45(11):5047–53
doi: 10.1021/es104383q
87   Li W, Yu H. Utilization of microbe-derived electricity for practical application. Environ Sci Technol 2014;48(1):17–8
doi: 10.1021/es405023b
88   Dong Y, Feng Y, Qu Y, Du Y, Zhou X, Liu J. A combined system of microbial fuel cell and intermittently aerated biological filter for energy self-sufficient wastewater treatment. Sci Rep 2015;5:18070
doi: 10.1038/srep18070
89   Wang Y, Li W, Sheng G, Shi B, Yu H. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling. Water Res 2013;47(15):5794–800
doi: 10.1016/j.watres.2013.06.058
90   Yuan S, Sheng G, Li W, Lin Z, Zeng R, Tong Z, . Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell. Environ Sci Technol 2010;44(14):5575–80
doi: 10.1021/es101317z
91   Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. Water Res 2014;66:219–32
doi: 10.1016/j.watres.2014.08.013
92   Liu W, Jiang H, Yu H. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 2015;115(22):12251–85
doi: 10.1021/acs.chemrev.5b00195
93   Rajabi H, Ghaemi N, Madaeni SS, Daraei P, Astinchap B, Zinadini S, . Nano-ZnO embedded mixed matrix polyethersulfone (PES) membrane: influence of nanofiller shape on characterization and fouling resistance. Appl Surf Sci 2015;349:66–77
doi: 10.1016/j.apsusc.2015.04.214
94   Rahimi Z, Zinatizadeh AAL, Zinadini S. Preparation of high antibiofouling amino functionalized MWCNTs/PES nanocomposite ultrafiltration membrane for application in membrane bioreactor. J Ind Eng Chem 2015;29:366–74
doi: 10.1016/j.jiec.2015.04.017
95   Kim JH, Choi DC, Yeon KM, Kim SR, Lee CH. Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environ Sci Technol 2011;45(4):1601–7
doi: 10.1021/es103483j
96   Werber JR, Osuji CO, Elimelech M. Materials for next-generation desalination and water purification membranes. Nat Rev Mater 2016;1:16018
doi: 10.1038/natrevmats.2016.18
97   Kondaveeti S, Min B. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. Water Res 2015;87:137–44
doi: 10.1016/j.watres.2015.09.011
98   Pennisi E. A better way to denitrify wastewater. Science 2012;337(6095): 675
doi: 10.1126/science.337.6095.675
99   Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, . A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 2006;440(7086):918–21
doi: 10.1038/nature04617
100   Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, . Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 2013;500(7464):567–70
doi: 10.1038/nature12375
101   Jiang F, Zhang L, Peng G, Liang S, Qian J, Wei L, . A novel approach to realize SANI process in freshwater sewage treatment—use of wet flue gas desulfurization waste streams as sulfur source. Water Res 2013;47(15):5773–82
doi: 10.1016/j.watres.2013.06.051
102   Beale DJ, Karpe AV, McLeod JD, Gondalia SV, Muster TH, Othman MZ, . An ‘omics’ approach towards the characterisation of laboratory scale anaerobic digesters treating municipal sewage sludge. Water Res 2016;88:346–57
doi: 10.1016/j.watres.2015.10.029
103   Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW. Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 2014;27:55–64
doi: 10.1016/j.copbio.2013.11.004
104   Hering JG, Waite TD, Luthy RG, Drewes JE, Sedlak DL. A changing framework for urban water systems. Environ Sci Technol 2013;47(19):10721–6
doi: 10.1021/es4007096
Related
[1] Jean-Ann James, Valerie M. Thomas, Arka Pandit, Duo Li, John C. Crittenden. Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region[J]. Engineering, 2016, 2(4): 470 -480 .
[2] Luis Berga. The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review[J]. Engineering, 2016, 2(3): 313 -318 .
[3] Sonia Bergamaschi,Emanuele Carlini,Michelangelo Ceci,Barbara Furletti,Fosca Giannotti,Donato Malerba,Mario Mezzanzanica,Anna Monreale,Gabriella Pasi,Dino Pedreschi,Raffele Perego,Salvatore Ruggieri. Big Data Research in Italy: A Perspective[J]. Engineering, 2016, 2(2): 163 -170 .
[4] Andrew C. Kadak. The Status of the US High-Temperature Gas Reactors[J]. Engineering, 2016, 2(1): 119 -123 .
[5] Zuoyi Zhang, Yujie Dong, Fu Li, Zhengming Zhang, Haitao Wang, Xiaojin Huang, Hong Li, Bing Liu, Xinxin Wu, Hong Wang, Xingzhong Diao, Haiquan Zhang, Jinhua Wang. The Shandong Shidao Bay 200 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) Demonstration Power Plant: An Engineering and Technological Innovation[J]. Engineering, 2016, 2(1): 112 -118 .
[6] John Gilleland, Robert Petroski, Kevan Weaver. The Traveling Wave Reactor: Design and Development[J]. Engineering, 2016, 2(1): 88 -96 .
[7] Alistair G. L. Borthwick. Marine Renewable Energy Seascape[J]. Engineering, 2016, 2(1): 69 -78 .
[8] Till Luhmann,Enno Wieben,Riccardo Treydel,Michael Stadler,Thomas Kumm. An Approach for Cost-Efficient Grid Integration of Distributed Renewable Energy Sources[J]. Engineering, 2015, 1(4): 447 -452 .
[9] Felix F. Wu,Pravin P. Varaiya,Ron S. Y. Hui. Smart Grids with Intelligent Periphery: An Architecture for the Energy Internet[J]. Engineering, 2015, 1(4): 436 -446 .
[10] Nick Jenkins,Chao Long,Jianzhong Wu. An Overview of the Smart Grid in Great Britain[J]. Engineering, 2015, 1(4): 413 -421 .
[11] Xin Chen, Youdun Bai, Zhijun Yang, Jian Gao, Gongfa Chen. A Precision-Positioning Method for a High-Acceleration Low-Load Mechanism Based on Optimal Spatial and Temporal Distribution of Inertial Energy[J]. Engineering, 2015, 1(3): 391 -398 .
[12] Olivier Schaetzle, Cees J. N. Buisman. Salinity Gradient Energy: Current State and New Trends[J]. Engineering, 2015, 1(2): 164 -166 .
Copyright © 2015 Chinese Academy of Engineering & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2

 Engineering