Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2016, Vol. 2 Issue (4) : 409 -413     DOI: 10.1016/J.ENG.2016.04.018
Research |
Heading toward Artificial Intelligence 2.0
Yunhe Pan()
Chinese Academy of Engineering, Beijing 100088, China
Abstract
Abstract  

With the popularization of the Internet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the development of AI 2.0 are given.

Keywords Artificial intelligence 2.0      Big data      Crowd intelligence      Cross-media      Human-machine      hybrid-augmented      intelligence      Autonomous-intelligent system     
Fund: 
Corresponding Authors: Yunhe Pan   
Just Accepted Date: 16 December 2016   Online First Date: 23 December 2016    Issue Date: 28 December 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yunhe Pan
Cite this article:   
Yunhe Pan. Heading toward Artificial Intelligence 2.0[J]. Engineering, 2016, 2(4): 409 -413 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2016.04.018     OR     http://engineering.org.cn/EN/Y2016/V2/I4/409
References
1   CB Insights. The race for AI: Google, Twitter, Intel, Apple in a rush to grab artificial intelligence startups [Internet]. New York: CB Insights. 2016 Dec 6 [cited 2016 Dec 10]. Available from: https://www.cbinsights.com/blog/top-acquirers-ai-startups-ma-timeline/.
2   Ferrucci D, Levas A, Bagchi S, Gondek D, Mueller ET. Watson: beyond jeopardy! Artif Intell 2013;199– 200:93–105
doi: 10.1016/j.artint.2012.06.009
3   Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, Mastering the game of Go with deep neural networks and tree search. Nature 2016;529(7587):484–9
doi: 10.1038/nature16961
4   Cellan-Jones R. Stephen Hawking warns artificial intelligence could end mankind [Internet]. London: BBC News. 2014 Dec 2 [cited 2016 Nov 20]. Available from: http://www.bbc.com/news/technology-30290540.
5   Gaudin S. Stephen Hawking fears robots could take over in 100 years [Internet]. Massachusetts: IDG Communications, Inc. 2015 May 14 [cited 2016 Nov 20]. Available from:http://www.computerworld.com/article/2922442/robotics/stephen-hawking-fears-robots-could-take-over-in-100-years.html.
6   Bengio Y, Shladover SE, Russell S. The rise of AI. Sci Am 2016;314:44–5
doi: 10.1038/scientificamerican0616-44
7   Crevier D. AI: the tumultuous history of the search for artificial intelligence.New York: Basic Books, Inc.; 1993.
8   Lighthill J. Artificial intelligence: a paper symposium.London: Science Research Council; 1973.
9   Poli R, Healy M, Kameas A, editors. Theory and applications of ontology: computer applications.Berlin: Springer; 2010.
10   Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Lves Z. DBpedia: a nucleus for a web of open data. In: Aberer K, Choi KS, Noy N, Allemang D, Lee K, Nixon L, et al., editors The semantic web. Berlin: Springer; 2007. p. 722–35
doi: 10.1007/978-3-540-76298-0_52
11   Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data; 2008 Jun 9–12; Vancouver, Canada. 2008. p. 1247–50
doi: 10.1145/1376616.1376746
12   The world factbook [Internet]. Washington, DC: Central Intelligence Agency. [cited 2016 Nov 20]. Available from: https://www.cia.gov/library/publications/the-world-factbook/.
13   Moor JH, editor. The Turing test: the elusive standard of artificial intelligence. Dordrecht: Kluwer Academic Publishers; 2003.
14   Mearian L. Google’s DeepMind A.I. can slash data center power use 40% [Internet]. Massachusetts: IDG Communications, Inc. 2016 Jul 20 [cited 2016 Nov 20]. Available from: http://www.computerworld.com/article/3098325/data-center/googles-deepmind-ai-can-slash-data-center-power-use-40.html.
15   Michelucci P, Dickinson JL. The power of crowds. Science 2016;351(6268):32–3
doi: 10.1126/science.aad6499
16   Lee K. Crowd intelligence in EyeWire [Internet]. [cited 2016 Nov 20]. Available from: http://kisuklee.wdfiles.com/local--files/research/crowdintelligence_EyeWire.pdf.
17   Cook G. Sebastian Seung’s quest to map the human brain. The New York Times [Internet]. 2015 Jan 8 [cited 2016 Nov 20]. Available from: http://www.nytimes.com/2015/01/11/magazine/sebastian-seungs-quest-to-map-the-human-brain.html.
18   Yang Y, Zhuang YT, Wu F, Pan YH. Harmonizing hierarchical manifolds for multimedia document semantics understanding and cross-media retrieval. IEEE Trans Multimed 2008;10(3):437–46
doi: 10.1109/TMM.2008.917359
19   Norvig P, Relman DA, Goldstein DB, Kammen DM, Weinberger DR, Aiello LC, 2020 visions. Nature 2010;463:26–32
doi: 10.1038/463026a
20   Lazer D, Kennedy R, King G, Vespignani A. The parable of Google Flu: traps in big data analysis. Science 2014;343(6176):1203–5
doi: 10.1126/science.1248506
21   Yao L, Torabi A, Cho K, Ballas N, Pal C, Larochelle H, Describing videos by exploiting temporal structure. In: ICCV 2015: Proceedings of the 2015 IEEE International Conference on Computer Vision; 2015 Dec 7–13; Santiago, Chile. 2015. p. 4507–15
doi: 10.1109/iccv.2015.512
22   Yao L, Torabi A, Cho K, Ballas N, Pal C, Larochelle H, Video description generation incorporating spatio-temporal features and a soft-attention mechanism. Eprint Arxiv 2015:arXiv:1502.08029.
23   McCartney M, Margaret McCartney: game on for Pokémon Go. Brit Med J 2016;354:i4306
doi: 10.1136/bmj.i4306
24   The release of core data for Chinese internet economy in 2014: online advertising [Internet]. Shanghai: iResearch; c2002–16 [cited 2016 Nov 20]. Available from: http://news.iresearch.cn/zt/247057.shtml. Chinese.
25   China Business Intelligence. Global and China speech recognition industry report, 2015–2020 [Internet]. 2016 Apr [cited 2016 Nov 20]. Report No.: ZLC030. Available from: http://www.researchinchina.com/Htmls/Report/2016/10246.html.
26   OFweek. The sales of industrial robots in China reached 56,000 in 2014 [Internet]. Shenzhen: OFweek. 2015 Jul 27 [cited 2016 Nov 20]. Available from: http://en.ofweek.com/news/The-sales-of-industrial-robots-in-China-reached-56-000-in-2014-32517.
27   Enjoy the intelligent cities: urban construction confronts both opportunities and challenges [Internet]. Nanjing: Nanjing Innovative Data Technologies, Inc.; c2013–16 [cited 2016 Nov 20]. Available from: http://www.smartcitychina.cn/MingJiaGuanDian/2014-12/3838.html. Chinese.
Related
[1] Yunhe Pan, Yun Tian, Xiaolong Liu, Dedao Gu, Gang Hua. Urban Big Data and the Development of City Intelligence[J]. Engineering, 2016, 2(2): 171 -178 .
[2] Sonia Bergamaschi,Emanuele Carlini,Michelangelo Ceci,Barbara Furletti,Fosca Giannotti,Donato Malerba,Mario Mezzanzanica,Anna Monreale,Gabriella Pasi,Dino Pedreschi,Raffele Perego,Salvatore Ruggieri. Big Data Research in Italy: A Perspective[J]. Engineering, 2016, 2(2): 163 -170 .
[3] Eric P. Xing,Qirong Ho,Pengtao Xie,Dai Wei. Strategies and Principles of Distributed Machine Learning on Big Data[J]. Engineering, 2016, 2(2): 179 -195 .
[4] Zhiqiang Wu,Yunhe Pan,Qiming Ye,Lingyu Kong. The City Intelligence Quotient (City IQ) Evaluation System: Conception and Evaluation[J]. Engineering, 2016, 2(2): 196 -211 .
[5] Daniel Richard Leff, Guang-Zhong Yang. Big Data for Precision Medicine[J]. Engineering, 2015, 1(3): 277 -279 .
[6] Jihong Chen, Jianzhong Yang, Huicheng Zhou, Hua Xiang, Zhihong Zhu, Yesong Li, Chen-Han Lee, Guangda Xu. CPS Modeling of CNC Machine Tool Work Processes Using an Instruction-Domain Based Approach[J]. Engineering, 2015, 1(2): 247 -260 .
Copyright © 2015 Chinese Academy of Engineering & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2

 Engineering