Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (1) : 55 -59     https://doi.org/10.1016/J.ENG.2017.01.007
Research |
Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys Peptides on Mg-Doped Hydroxyapatite
Alessandro Pistone1(),Daniela Iannazzo1,Claudia Espro1,Signorino Galvagno1,Anna Tampieri2,Monica Montesi2,Silvia Panseri2,Monica Sandri2
1. Department of Engineering, University of Messina, Messina 98166, Italy
2. Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza 48018, Italy
Abstract
Abstract  

Stem cell homing, namely the recruitment of mesenchymal stem cells (MSCs) to injured tissues, is highly effective for bone regeneration in vivo. In order to explore whether the incorporation of mimetic peptide sequences on magnesium-doped (Mg-doped) hydroxyapatite (HA) may regulate the homing of MSCs, and thus induce cell migration to a specific site, we covalently functionalized MgHA disks with two chemotactic/haptotactic factors: either the fibronectin fragment III1-C human (FF III1-C), or the peptide sequence Gly-Arg-Gly-Asp-Ser-Pro-Lys, a fibronectin analog that is able to bind to integrin transmembrane receptors. Preliminary biological evaluation of MSC viability, analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, suggested that stem cells migrate to the MgHA disks in response to the grafted haptotaxis stimuli.

Keywords Mg-doped hydroxyapatite      Mesenchymal stem cells      Chemotactic/haptotactic factors      Bone tissue engineering     
Fund: 
Corresponding Authors: Alessandro Pistone   
Just Accepted Date: 20 February 2017   Online First Date: 27 February 2017    Issue Date: 02 March 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Alessandro Pistone
Daniela Iannazzo
Claudia Espro
Signorino Galvagno
Anna Tampieri
Monica Montesi
Silvia Panseri
Monica Sandri
Cite this article:   
Alessandro Pistone,Daniela Iannazzo,Claudia Espro, et al. Tethering of Gly-Arg-Gly-Asp-Ser-Pro-Lys Peptides on Mg-Doped Hydroxyapatite[J]. Engineering, 2017, 3(1): 55 -59 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.01.007     OR     http://engineering.org.cn/EN/Y2017/V3/I1/55
References
1   Laurencin CT, Khan Y. Regenerative Engineering. Sci Transl Med? 2012;4(160):160ed9
doi: 10.1126/scitranslmed.3004467
2   Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng? 2012;40(5):363–408
doi: 10.1615/CritRevBiomedEng.v40.i5.10 pmid: 23339648
3   Dawson JI, Kanczler J, Tare R, Kassem M, Oreffo RO. Concise review: bridging the gap: bone regeneration using skeletal stem cell-based strategies—where are we now? Stem Cells 2014;32(1):35–44
doi: 10.1002/stem.1559 pmid: 24115290
4   Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2014;2:14017
doi: 10.1038/boneres.2014.17 pmid: 26273526
5   Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res 2015;3:15029
doi: 10.1038/boneres.2015.29 pmid: 26558141
6   Iannazzo D, Pistone A, Espro C, Galvagno S. Drug delivery strategies for bone tissue regeneration. In: Panseri S, Taraballi F, Cunha C, editors Biomimetic approaches for tissue healing. Foster City: OMICS Group eBooks; 2015. p. 1–39.
7   Panseri S, Cunha C, D’Alessandro T, Sandri M, Russo A, Giavaresi G, et al. Magnetic hydroxyapatite bone substitutes to enhance tissue regeneration: evaluation in vitro using osteoblast-like cells and in vivo in a bone defect. PLoS One 2012;7(6):e38710
doi: 10.1371/journal.pone.0038710 pmid: 22685602
8   Cunha C, Panseri S, Iannazzo D, Piperno A, Pistone A, Fazio M, et al. Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications. Nanotechnology 2012;23(46):465102
doi: 10.1088/0957-4484/23/46/465102 pmid: 23093179
9   Wang DX, He Y, Bi L, Qu ZH, Zou JW, Pan Z, et al. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomedicine 2013;8: 1855–65
doi: 10.2147/IJN.S43706 pmid: 23690683
10   Yoshikawa H, Myoui A. Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs 2005;8(3):131–6
doi: 10.1007/s10047-005-0292-1 pmid: 16235028
11   Bellucci D, Sola A, Gazzarri M, Chiellini F, Cannillo V. A new hydroxyapatite-based biocomposite for bone replacement. Mater Sci Eng C Mater Biol Appl 2013;33(3):1091–101
doi: 10.1016/j.msec.2012.11.038 pmid: 23827547
12   Pistone A, Iannazzo D, Panseri S, Montesi M, Tampieri A, Galvagno S. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering. Nanotechnology 2014;25(42):425701
doi: 10.1088/0957-4484/25/42/425701 pmid: 25265364
13   Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, et al. Magnesium incorporation into hydroxyapatite. Biomaterials 2011;32(7):1826–37
doi: 10.1016/j.biomaterials.2010.11.017 pmid: 21144581
14   Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 2008;19(1):239–47
doi: 10.1007/s10856-006-0032-y pmid: 17597369
15   Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. Biomed Res Int 2014;2014:921905
doi: 10.1155/2014/921905
16   Schantz JT, Chim H, Whiteman M. Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Eng 2007;13(11):2615–24
doi: 10.1089/ten.2006.0438 pmid: 17961003
17   Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 2012;64(12):1292–309
doi: 10.1016/j.addr.2012.01.016 pmid: 22342771
18   García AJ, Reyes CD. Bio-adhesive surfaces to promote osteoblast differentiation and bone formation. J Dent Res 2005;84(5):407–13
doi: 10.1177/154405910508400502 pmid: 15840774
19   Yun YR, Pham BH, Yoo YR, Lee S, Kim HW, Jang JH. Engineering of self-assembled fibronectin matrix protein and its effects on mesenchymal stem cells. Int J Mol Sci 2015;16(8):19645–56
doi: 10.3390/ijms160819645 pmid: 26295389
20   Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 1997;69(2):581–93
doi: 10.1046/j.1471-4159.1997.69020581.x pmid: 9231715
Related
[1] Jorge L. Escobar Ivirico, Maumita Bhattacharjee, Emmanuel Kuyinu, Lakshmi S. Nair, Cato T. Laurencin. Regenerative Engineering for Knee Osteoarthritis Treatment: Biomaterials and Cell-Based Technologies[J]. Engineering, 2017, 3(1): 16 -27 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering