Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (1) : 60 -65
Research |
Engineering Solutions for Representative Models of the Gastrointestinal Human-Microbe Interface
Marc Mac Giolla Eain1,2,Joanna Baginska1,Kacy Greenhalgh1,Joëlle V. Fritz1,Frederic Zenhausern2,Paul Wilmes1()
1. Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L 4362, Luxembourg
2. Center for Applied Nanobioscience and Medicine, University of Arizona, Tucson, AZ 85721, USA

Host-microbe interactions at the gastrointestinal interface have emerged as a key component in the governance of human health and disease. Advances in micro-physiological systems are providing researchers with unprecedented access and insights into this complex relationship. These systems combine the benefits of microengineering, microfluidics, and cell culture in a bid to recreate the environmental conditions prevalent in the human gut. Here we present the human-microbial cross talk (HuMiX) platform, one such system that leverages this multidisciplinary approach to provide a representative in vitro model of the human gastrointestinal interface. HuMiX presents a novel and robust means to study the molecular interactions at the host-microbe interface. We summarize our proof-of-concept results obtained using the platform and highlight its potential to greatly enhance our understanding of host-microbe interactions with a potential to greatly impact the pharmaceutical, food, nutrition, and healthcare industries in the future. A number of key questions and challenges facing these technologies are also discussed.

Keywords Microbiome      Microfluidics      Organ-on-a-chip      HuMiX     
Corresponding Authors: Paul Wilmes   
Just Accepted Date: 21 February 2017   Online First Date: 28 February 2017    Issue Date: 02 March 2017
E-mail this article
E-mail Alert
Articles by authors
Marc Mac Giolla Eain
Joanna Baginska
Kacy Greenhalgh
lle V. Fritz
Frederic Zenhausern
Paul Wilmes
Cite this article:   
Marc Mac Giolla Eain,Joanna Baginska,Kacy Greenhalgh, et al. Engineering Solutions for Representative Models of the Gastrointestinal Human-Microbe Interface[J]. Engineering, 2017, 3(1): 60 -65 .
URL:     OR
1   Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14(8):e1002533
doi: 10.1371/journal.pbio.1002533 pmid: 27541692
2   Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol 2015;31(1):69–75
doi: 10.1097/MOG.0000000000000139 pmid: 25394236
3   Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol 2012;7(1):99–122
doi: 10.1146/annurev-pathol-011811-132421 pmid: 21910623
4   Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007;104(34):13780–5
doi: 10.1073/pnas.0706625104 pmid: 17699621
5   Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13(10):701–12
doi: 10.1038/nrn3346 pmid: 22968153
6   Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et alMicrobial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011;6(1):e16393
doi: 10.1371/journal.pone.0016393 pmid: 21297998
7   Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015;26:26191.25651997
doi: 10.3402/mehd.v26.26191 pmid: 25651997.
8   Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med 2013;34(1):39–58
doi: 10.1016/j.mam.2012.11.001 pmid: 23159341
9   Naseer MI, Bibi F, Alqahtani MH, Chaudhary AG, Azhar EI, Kamal MA, et alRole of gut microbiota in obesity, type 2 diabetes and Alzheimer’s disease. CNS Neurol Disord Drug Targets 2014;13(2):305–11
doi: 10.2174/18715273113126660147 pmid: 24059313
10   Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 2011;301(3):G401–24
doi: 10.1152/ajpgi.00110.2011 pmid: 21700901
11   Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, et alGut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015;30(3):350–8
doi: 10.1002/mds.26069 pmid: 25476529
12   Panzer AR, Lynch SV. Influence and effect of the human microbiome in allergy and asthma. Curr Opin Rheumatol 2015;27(4):373–80
doi: 10.1097/BOR.0000000000000191 pmid: 26002029
13   Roume H, Muller EE, Cordes T, Renaut J, Hiller K, Wilmes P. A biomolecular isolation framework for eco-systems biology. ISME J 2013;7(1):110–21
doi: 10.1038/ismej.2012.72 pmid: 22763648
14   Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et alMetabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 2009;106(10):3698–703
doi: 10.1073/pnas.0812874106 pmid: 19234110
15   Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A, et alIntegrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol 2016;2:16180
doi: 10.1038/nmicrobiol.2016.180
16   Fritz JV, Desai MS, Shah P, Schneider JG, Wilmes P. From meta-omics to causality: experimental models for human microbiome research. Microbiome 2013;1(1):14
doi: 10.1186/2049-2618-1-14 pmid: 24450613
17   Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M, et alReversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 2010;328(5986):1705–9
doi: 10.1126/science.1188454 pmid: 20576892
18   Parlesak A, Haller D, Brinz S, Baeuerlein A, Bode C. Modulation of cytokine release by differentiated CACO-2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria. Scand J Immunol 2004;60(5):477–85
doi: 10.1111/j.0300-9475.2004.01495.x pmid: 15541040
19   Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech 2015;8(1):1–16
doi: 10.1242/dmm.017400 pmid: 25561744
20   Arnold JW, Roach J, Azcarate-Peril MA. Emerging technologies for gut microbiome research. Trends Microbiol 2016;24(11):887–901
doi: 10.1016/j.tim.2016.06.008 pmid: 27426971
21   Sung JH, Yu J, Luo D, Shuler ML, March JC. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 2011;11(3):389–92
doi: 10.1039/C0LC00273A pmid: 21157619
22   Kim HJ, Huh D, Hamilton G, Ingber DE. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 2012;12(12):2165–74
doi: 10.1039/c2lc40074j pmid: 22434367
23   Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci USA 2016;113(1):E7–15
doi: 10.1073/pnas.1522193112 pmid: 26668389
24   Marzorati M, Vanhoecke B, De Ryck T, Sadaghian Sadabad M, Pinheiro I, Possemiers S, et alThe HMI™ module: a new tool to study the host-microbiota interaction in the human gastrointestinal tract in vitro. BMC Microbiol 2014;14:133
doi: 10.1186/1471-2180-14-133 pmid: 24884540
25   Shah P, Fritz JV, Glaab E, Desai MS, Greenhalgh K, Frachet A, et alA microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat Commun 2016;7:11535
doi: 10.1038/ncomms11535 pmid: 27168102
26   Roume H, Muller EE, Cordes T, Renaut J, Hiller K, Wilmes P. A biomolecular isolation framework for eco-systems biology. ISEM J 2013;7(1):110–21
doi: 10.1038/ismej.2012.72
27   Sheridan WG, Lowndes RH, Young HL. Intraoperative tissue oximetry in the human gastrointestinal tract. Am J Surg 1990;159(3):314–9
doi: 10.1016/S0002-9610(05)81226-7 pmid: 2305939
28   Schmidt TM, Kao JY. A little O2 may go a long way in structuring the GI microbiome. Gastroenterology 2014;147(5):956–9
doi: 10.1053/j.gastro.2014.09.025 pmid: 25265578
29   Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009;9(5):313–23
doi: 10.1038/nri2515 pmid: 19343057
30   Lee PJ, Hung PJ, Lee LP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng 2007;97(5):1340–6
doi: 10.1002/bit.21360 pmid: 17286266
31   Jang KJ, Suh KY. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 2010;10:36–42
doi: 10.1039/B907515A
32   Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ-level lung functions on a chip. Science 2010;328(5986):1662–8
doi: 10.1126/science.1188302 pmid: 20576885
[1] Baohong Wang, Mingfei Yao, Longxian Lv, Zongxin Ling, Lanjuan Li. The Human Microbiota in Health and Disease[J]. Engineering, 2017, 3(1): 71 -82 .
[2] Jian Xu, Bo Ma, Xiaoquan Su, Shi Huang, Xin Xu, Xuedong Zhou, Wei Huang, Rob Knight. Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data[J]. Engineering, 2017, 3(1): 66 -70 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.