Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (1) : 90 -97
Research |
The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer
Liuyang Zhao1,Xiang Zhang1,Tao Zuo1,Jun Yu1,2()
1. Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong,Hong Kong, China
2. Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China

Colorectal cancer (CRC) is a multistage disease resulting from complex factors, including genetic mutations, epigenetic changes, chronic inflammation, diet, and lifestyle. Recent accumulating evidence suggests that the gut microbiota is a new and important player in the development of CRC. Imbalance of the gut microbiota, especially dysregulated gut bacteria, contributes to colon cancer through mechanisms of inflammation, host defense modulations, oxidative stress, and alterations in bacterial-derived metabolism. Gut commensal bacteria are anatomically defined as four populations: luminal commensal bacteria, mucus-resident bacteria, epithelium-resident bacteria, and lymphoid tissue-resident commental bacteria. The bacterial flora that are harbored in the gastrointestinal (GI) tract vary both longitudinally and cross-sectionally by different anatomical localization. It is notable that the translocation of colonic commensal bacteria is closely related to CRC progression. CRC-associated bacteria can serve as a non-invasive and accurate biomarker for CRC diagnosis. In this review, we summarize recent findings on the oncogenic roles of gut bacteria with different anatomical localization in CRC progression.

Keywords Microbiota      Colorectal cancer      Luminal commensal bacteria      Translocation      Biomarker     
Corresponding Authors: Jun Yu   
Just Accepted Date: 21 February 2017   Online First Date: 27 February 2017    Issue Date: 02 March 2017
E-mail this article
E-mail Alert
Articles by authors
Liuyang Zhao
Xiang Zhang
Tao Zuo
Jun Yu
Cite this article:   
Liuyang Zhao,Xiang Zhang,Tao Zuo, et al. The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer[J]. Engineering, 2017, 3(1): 90 -97 .
URL:     OR
1   Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66(1):7–30
doi: 10.3322/caac.21332
2   Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, et alNutrient-gene interaction in colon cancer, from the membrane to cellular physiology. Annu Rev Nutr 2016;36:543–70
doi: 10.1146/annurev-nutr-071715-051039
3   Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genom Hum G 2002;3(1):101–28
doi: 10.1146/annurev.genom.3.022502.103043
4   Garrett WS. Cancer and the microbiota. Science 2015;348(6230):80–6
doi: 10.1126/science.aaa4972
5   Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, et alFusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. Epub 2015 Aug 26.
6   Bhattacharya N, Yuan R, Prestwood TR, Penny HL, DiMaio MA, Reticker-Flynn NE, et alNormalizing microbiota-induced retinoic acid deficiency stimulates protective CD8 + T cell-mediated immunity in colorectal cancer. Immunity 2016;45(3):641–55
doi: 10.1016/j.immuni.2016.08.008
7   Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et alBinding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015;42(2):344–55
doi: 10.1016/j.immuni.2015.01.010
8   Brennan CA, Garrett WS. Gut microbiota, inflammation, and colorectal cancer. Annu Rev Microbiol 2016;70:395–411
doi: 10.1146/annurev-micro-102215-095513
9   Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014;157(1):121–41
doi: 10.1016/j.cell.2014.03.011
10   Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, et alIntestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012;338(6103):120–3
doi: 10.1126/science.1224820
11   Irrazábal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell 2014;54(2):309–20
doi: 10.1016/j.molcel.2014.03.039
12   Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe 2014;15(3):317–28
doi: 10.1016/j.chom.2014.02.007
13   Collins JW, Keeney KM, Crepin VE, Rathinam VAK, Fitzgerald KA, Finlay BB, et alCitrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol 2014;12(9):612–23
doi: 10.1038/nrmicro3315
14   Chung HC, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et alGut immune maturation depends on colonization with a host-specific microbiota. Cell 2012;149(7):1578–93
doi: 10.1016/j.cell.2012.04.037
15   Duerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 2009;31(3):368–76
doi: 10.1016/j.immuni.2009.08.009
16   Geuking MB, Cahenzli J, Lawson MAE, Ng DCK, Slack E, Hapfelmeier S, et alIntestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 2011;34(5):794–806
doi: 10.1016/j.immuni.2011.03.021
17   Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et alResident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 1998;66(11):5224–31.
18   Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, et alThe intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity 2015;43(5):998–1010
doi: 10.1016/j.immuni.2015.09.012
19   Wang X, Yang Y, Moore DR, Nimmo SL, Lightfoot SA, Huycke MM. 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. Gastroenterology 2012;142(3):543–51
doi: 10.1053/j.gastro.2011.11.020
20   Yang Y, Wang X, Huycke T, Moore DR, Lightfoot SA, Huycke MM. Colon macrophages polarized by commensal bacteria cause colitis and cancer through the bystander effect. Transl Oncol 2013;6(5):596–606
doi: 10.1593/tlo.13412
21   Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet 2010;11(1):31–46
doi: 10.1038/nrg2626
22   Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods 2008;5(1):16–8
doi: 10.1038/nmeth1156
23   Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et alA human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464(7285):59–65
doi: 10.1038/nature08821
24   Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016;14(8):e1002533
doi: 10.1371/journal.pbio.1002533
25   Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29(8):1035–41
doi: 10.1136/gut.29.8.1035
26   He G, Shankar RA, Chzhan M, Samouilov A, Kuppusamy P, Zweier JL. Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci USA 1999;96(8):4586–91
doi: 10.1073/pnas.96.8.4586
27   Gallo RL, Hooper LV. Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 2012;12(7):503–16
doi: 10.1038/nri3228
28   Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et alRegulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009;461(7268):1282–6
doi: 10.1038/nature08530
29   Rao SS, Kuo B, McCallum RW, Chey WD, DiBaise JK, Hasler WL, et alInvestigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clin Gastroenterol Hepatol 2009;7(5):537–44
doi: 10.1016/j.cgh.2009.01.017
30   Wlodarska M, Kostic AD, Xavier RJ. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 2015;17(5):577–91
doi: 10.1016/j.chom.2015.04.008
31   Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et alAn estimation of the number of cells in the human body. Ann Hum Biol 2013;40(6):463–71
doi: 10.3109/03014460.2013.807878
32   Chin KF, Kallam R, O’Boyle C, MacFie J. Bacterial translocation may influence the long-term survival in colorectal cancer patients. Dis Colon Rectum 2007;50(3):323–30
doi: 10.1007/s10350-006-0827-4
33   Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et alDiversity of the human intestinal microbial flora. Science 2005;308(5728):1635–8
doi: 10.1126/science.1110591
34   Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489(7415):220–30
doi: 10.1038/nature11550
35   Hill DA, Hoffmann C, Abt MC, Du Y, Kobuley D, Kirn TJ, et alMetagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol 2010;3(2):148–58
doi: 10.1038/mi.2009.132
36   Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et alEnterotypes of the human gut microbiome. Nature 2011;473(7346):174–80
doi: 10.1038/nature09944
37   Nosho K, Sukawa Y, Adachi Y, Ito M, Mitsuhashi K, Kurihara H, et alAssociation of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol 2016;22(2):557–66
doi: 10.3748/wjg.v22.i2.557
38   Abed J, Emgård JE, Zamir G, Faroja M, Almogy G, Grenov A, et alFap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 2016;20(2):215–25
doi: 10.1016/j.chom.2016.07.006
39   Huang JY, Lee SM, Mazmanian SK. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe 2011;17(4):137–41
doi: 10.1016/j.anaerobe.2011.05.017
40   Corfield AP. Mucins: a biologically relevant glycan barrier in mucosal protection. Bba-Gen Subjects 2015;1850(1):236–52
doi: 10.1016/j.bbagen.2014.05.003
41   Robertson BR, O’Rourke JL, Neilan BA, Vandamme P, On SLW, Fox JG, et alMucispirillum schaedleri gen. nov., sp nov., a spiral-shaped bacterium colonizing the mucus layer of the gastrointestinal tract of laboratory rodents. Int J Syst Evol Microbiol 2005;55(3):1199–204
doi: 10.1099/ijs.0.63472-0
42   Li H, Limenitakis JP, Fuhrer T, Geuking MB, Lawson MA, Wyss M, et alThe outer mucus layer hosts a distinct intestinal microbial niche. Nat Commun 2015;6:8292
doi: 10.1038/ncomms9292
43   Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et alTreg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500(7461):232–6
doi: 10.1038/nature12331
44   Brook I, Myhal ML. Adherence of Bacteroides fragilis group species. Infect Immun 1991;59(2):742–4.
45   Cossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 2004;304(5668):242–8
doi: 10.1126/science.1090124
46   Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, et alEnhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004;127(1):80–93
doi: 10.1053/j.gastro.2004.03.054
47   Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et alColonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res 2014;20(4):859–67
doi: 10.1158/1078-0432.CCR-13-1343
48   Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, et alIndigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci USA 2010;107(16):7419–24
doi: 10.1073/pnas.1001061107
49   Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, et alInnate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012;336(6086):1321–5
doi: 10.1126/science.1222551
50   Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et alLinking long-term dietary patterns with gut microbial enterotypes. Science 2011;334(6052):105–8
doi: 10.1126/science.1208344
51   Corredoira J, Alonso MP, Coira A, Casariego E, Arias C, Alonso D, et alCharacteristics of Streptococcus bovis endocarditis and its differences with Streptococcus viridans endocarditis. Eur J Clin Microbiol Infect Dis 2008;27(4):285–91
doi: 10.1007/s10096-007-0441-y
52   Lazarovitch T, Shango M, Levine M, Brusovansky R, Akins R, Hayakawa K, et alThe relationship between the new taxonomy of Streptococcus bovis and its clonality to colon cancer, endocarditis, and biliary disease. Infection 2013;41(2):329–37
doi: 10.1007/s15010-012-0314-x
53   Gupta A, Madani R, Mukhtar H. Streptococcus bovis endocarditis, a silent sign for colonic tumour. Colorectal Dis 2010;12(3):164–71
doi: 10.1111/j.1463-1318.2009.01814.x
54   Harrison S, Benziger H, Koerner R. Streptococcus bovis infections, colorectal cancer and liver dysfunction. ANZ J Surg 2011;81(11):762–3
doi: 10.1111/j.1445-2197.2011.05874.x
55   McMahon AJ, Auld CD, Dale BA, Walls AD, McCormick JS. Streptococcus bovis septicaemia associated with uncomplicated colonic carcinoma. Br J Surg 1991;78(7):883–5
doi: 10.1002/bjs.1800780734
56   Wending GK, Metzger PP, Dozois EJ, Chua HK, Krishna M. Unusual bacterial infections and colorectal carcinoma—Streptococcus bovis and Clostridium septicum: report of three cases. Dis Colon Rectum 2006;49(8):1223–7
doi: 10.1007/s10350-006-0576-4
57   Klein RS, Catalano MT, Edberg SC, Casey JI, Steigbigel NH. Streptococcus bovis septicemia and carcinoma of the colon. Ann Intern Med 1979;91(4):560–2
doi: 10.7326/0003-4819-91-4-560
58   Boleij A, Roelofs R, Schaeps RM, Schülin T, Glaser P, Swinkels DW, et alIncreased exposure to bacterial antigen RpL7/L12 in early stage colorectal cancer patients. Cancer 2010;116(17):4014–22
doi: 10.1002/cncr.25212
59   Ellmerich S, Schöller M, Duranton B, Gosse F, Galluser M, Klein JP, et alPromotion of intestinal carcinogenesis by Streptococcus bovis. Carcinogenesis 2000;21(4):753–6
doi: 10.1093/carcin/21.4.753
60   Tjalsma H, Schöller-Guinard M, Lasonder E, Ruers TJ, Willems HL, Swinkels DW. Profiling the humoral immune response in colon cancer patients: diagnostic antigens from Streptococcus bovis. Int J Cancer 2006;119(9):2127–35
doi: 10.1002/ijc.22116
61   Biarc J, Nguyen IS, Pini A, Gosse F, Richert S, Thierse D, et alCarcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S.bovis). Carcinogenesis 2004;25(8):1477–84
doi: 10.1093/carcin/bgh091
62   Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, et alMetagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017;66(1):70–8
doi: 10.1136/gutjnl-2015-309800
63   Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et alFusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013;14(2):207–15
doi: 10.1016/j.chom.2013.07.007
64   Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, et alFusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 2014;74(5):1311–8
doi: 10.1158/0008-5472.CAN-13-1865
65   Dharmani P, Strauss J, Ambrose C, Allen-Vercoe E, Chadee K. Fusobacteriumnucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun 2011;79(7):2597–607
doi: 10.1128/IAI.05118-11
66   Macfarlane S, Woodmansey EJ, Macfarlane GT. Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol 2005;71(11):7483–92
doi: 10.1128/AEM.71.11.7483-7492.2005
67   Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu W, et alGut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 2015;6:8727
doi: 10.1038/ncomms9727
68   Chambers FG, Koshy SS, Saidi RF, Clark DP, Moore RD, Sears CL. Bacteroides fragilistoxin exhibits polar activity on monolayers of human intestinal epithelial cells (T84 cells) in vitro. Infect Immun 1997;65(9):3561–70.
69   Wu S, Rhee KJ, Zhang M, Franco A, Sears CL. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J Cell Sci 2007;120:1944–52
doi: 10.1242/jcs.03455
70   Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM, Mullin JM. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 1999;20(8):1425–32
doi: 10.1093/carcin/20.8.1425
71   Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, et alA possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 2006;12(8):782–6
doi: 10.1111/j.1469-0691.2006.01494.x
72   Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et alThe Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015;60(2):208–15
doi: 10.1093/cid/ciu787
73   Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, et alMicrobial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011;6(1):e16393
doi: 10.1371/journal.pone.0016393
74   Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et alStructural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 2012;6(2):320–9
doi: 10.1038/ismej.2011.109
75   Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, et alPolyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA 2011;108(37):15354–9. 10.1073/pnas.1010203108
doi: 10.1073/pnas.1010203108.
76   Housseau F, Sears CL. Enterotoxigenic Bacteroides fragilis (ETBF)-mediated colitis in Min (Apc+/−) mice: a human commensal-based murine model of colon carcinogenesis. Cell Cycle 2010;9(1):3–5
doi: 10.4161/cc.9.1.10352
77   Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, et alVancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010;120(12):4332–41
doi: 10.1172/JCI43918
78   Sonnenburg JL, Chen CT, Gordon JI. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 2006;4(12):e413
doi: 10.1371/journal.pbio.0040413
79   Thompson-Chagoyán OC, Maldonado J, Gil A. Aetiology of inflammatory bowel disease (IBD): role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin Nutr 2005;24(3):339–52
doi: 10.1016/j.clnu.2005.02.009
80   Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 2007;104(18):7617–21
doi: 10.1073/pnas.0700440104
81   Dunne C, Murphy L, Flynn S, O’Mahony L, O’Halloran S, Feeney M, et alProbiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhoek 1999;76(1):279–92
doi: 10.1023/A:1002065931997
82   Johansson MEV, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, et alBacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 2014;63(2):281–91
doi: 10.1136/gutjnl-2012-303207
83   Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 2008;105(39):15064–9
doi: 10.1073/pnas.0803124105
84   Johansson MEV, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol 2016;16(10):639–49
doi: 10.1038/nri.2016.88
85   Johansson ME, Jakobsson HE, Holmén-Larsson J, Schütte A, Ermund A, Rodriguez-Piñeiro AM, et alNormalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 2015;18(5):582–92
doi: 10.1016/j.chom.2015.10.007
86   Johansson MEV. Fast renewal of the distal colonic mucus layers by the surface goblet cells as measured by in vivo labeling of mucin glycoproteins. PLoS One 2012;7(7):e41009
doi: 10.1371/journal.pone.0041009
87   Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, et alThe composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2015;16(2):164–77
doi: 10.15252/embr.201439263
88   Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 2008;74(5):1646–8
doi: 10.1128/AEM.01226-07
89   Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 2014;14(3):141–53
doi: 10.1038/nri3608
90   Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001;294(5549):2155–8
doi: 10.1126/science.1065718
91   Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, et alThe key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009;31(4):677–89
doi: 10.1016/j.immuni.2009.08.020
92   Rolhion N, Darfeuille-Michaud A. Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis 2007;13(10):1277–83
doi: 10.1002/ibd.20176
93   Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B, Yantiss R, et alCulture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J 2007;1(5):403–18
doi: 10.1038/ismej.2007.52
94   Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J, et alAssociation between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 1998;115(2):281–6
doi: 10.1016/S0016-5085(98)70194-5
95   Dreux N, Denizot J, Martinez-Medina M, Mellmann A, Billig M, Kisiela D, et alPoint mutations in FimH adhesin of Crohn’s disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response. PLoS Pathog 2013;9(1):e1003141
doi: 10.1371/journal.ppat.1003141
96   Eaves-Pyles T, Allen CA, Taormina J, Swidsinski A, Tutt CB, Jezek GE, et alEscherichia coli isolated from a Crohn’s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol 2008;298(5–6):397–409
doi: 10.1016/j.ijmm.2007.05.011
97   Subramanian S, Rhodes JM, Hart CA, Tam B, Roberts CL, Smith SL, et alCharacterization, of epithelial IL8 response to inflammatory bowel disease mucosal E. coli and its inhibition by mesalamine. Inflamm Bowel Dis 2008;14(2):162–75
doi: 10.1002/ibd.20296
98   Mimouna S, Goncalves D, Barnich N, Darfeuille-Michaud A, Hofman P, Vouret-Craviari V. Crohn disease-associated Escherichia coli promote gastrointestinal inflammatory disorders by activation of HIF-dependent responses. Gut Microbes 2011;2(6):335–46
doi: 10.4161/gmic.18771
99   Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013;12(1):86
doi: 10.1186/1476-4598-12-86
100   Mcwilliams M, Phillips-Quagliata JM, Lamm ME. Characteristics of mesenteric lymph-node cells homing to gut-associated lymphoid-tissue in syngeneic mice. J Immunol 1975;115(1):54–8.
101   Kunisawa J, Kiyono H. Alcaligenes is commensal bacteria habituating in the gut-associated lymploid tissue for the regulation of intestinal IgA responses. Front Immunol 2012;3:65
doi: 10.3389/fimmu.2012.00065
102   Fung TC, Bessman NJ, Hepworth MR, Kumar N, Shibata N, Kobuley D, et alLymphoid-tissue-resident commensal bacteria promote members of the IL-10 cytokine family to establish mutualism. Immunity 2016;44(3):634–46
doi: 10.1016/j.immuni.2016.02.019
103   Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med 2015;372(15):1441–52
doi: 10.1056/NEJMra1403718
104   Deitch EA. Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings? Surgery 2002;131(3):241–4
doi: 10.1067/msy.2002.116408
105   Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et alAdenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012;491(7423):254–8
doi: 10.1038/nature11465
106   Elinav E, Nowarski R, Thaiss CA, Hu B, Jin CC, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 2013;13(11):759–71
doi: 10.1038/nrc3611
107   Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005;5(10):749–59
doi: 10.1038/nri1703
108   Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang W, et alSphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 2013;23(1):107–20
doi: 10.1016/j.ccr.2012.11.013
109   Madia F, Grossi V, Peserico A, Simone C. Updates from the intestinal front line: autophagic weapons against inflammation and cancer. Cells 2012;1(3):535–57
doi: 10.3390/cells1030535
110   Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol 2008;32(3):609–17
doi: 10.3892/ijo.32.3.609
111   Li Y, Kundu P, Seow SW, de Matos CT, Aronsson L, Chin KC, et alG ut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 2012;33(6):1231–8
doi: 10.1093/carcin/bgs137
112   Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 2014;12(10):661–72
doi: 10.1038/nrmicro3344
113   Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, et alDiet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 2013;98(1):111–20. 10.3945/ajcn.112.056689
doi: 10.3945/ajcn.112.056689.
114   Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et alHigh-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am J Clin Nutr 2011;93(5):1062–72
doi: 10.3945/ajcn.110.002188
115   Loh YH, Jakszyn P, Luben RN, Mulligan AA, Mitrou PN, Khaw KT. N-nitroso compounds and cancer incidence: the European Prospective Investigation into Cancer and Nutrition (EPIC)- Norfolk Study. Am J Clin Nutr 2011;93(5):1053–61
doi: 10.3945/ajcn.111.012377
116   Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res 2012;56(1):184–96
doi: 10.1002/mnfr.201100542
117   Marquet P, Duncan SH, Chassard C, Bernalier-Donadille A, Flint HJ. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol Lett 2009;299(2):128–34
doi: 10.1111/j.1574-6968.2009.01750.x
118   Roediger WE, Moore J, Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci 1997;42(8):1571–9
doi: 10.1023/A:1018851723920
119   Di Martino ML, Campilongo R, Casalino M, Micheli G, Colonna B, Prosseda G. Polyamines: emerging players in bacteria-host interactions. Int J Med Microbiol 2013;303(8):484–91
doi: 10.1016/j.ijmm.2013.06.008
120   Pegg AE. Toxicity of polyamines and their metabolic products. Chem Res Toxicol 2013;26(12):1782–800
doi: 10.1021/tx400316s
121   Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 2008;67(3):253–6
doi: 10.1017/S002966510800712X
122   Homann N. Alcohol and upper gastrointestinal tract cancer: the role of local acetaldehyde production. Addict Biol 2001;6(4):309–23
doi: 10.1080/13556210020077028
123   Lescut D, Colombel JF, Vincent P, Cortot A, Fournier L, Quandalle P, et alBacterial translocation in colorectal cancers. Gastroenterol Clin Biol 1990;14(11):811–4.
124   Klein GL, Petschow BW, Shaw AL, Weaver E. Gut barrier dysfunction and microbial translocation in cancer cachexia: a new therapeutic target. Curr Opin Support Palliat Care 2013;7(4):361–7
doi: 10.1097/SPC.0000000000000017
125   Liang JQ, Chiu J, Chen Y, Huang Y, Higashimori A, Fang JY, et alFecal bacteria act as novel biomarkers for non-invasive diagnosis of colorectal cancer. Clin Cancer Res. Epub 2016 Oct 3
doi: 10.1158/1078-0432.CCR-16-1599
126   Wong SH, Kwong TN, Chow TC, Luk AK, Dai RZ, Nakatsu G, et alQuantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut. Epub 2016 Oct 24
doi: 10.1136/gutjnl-2016-312766
127   Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, et alCould gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget 2016;7(29):46158–72.
128   Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013;14(2):195–206
doi: 10.1016/j.chom.2013.07.012
[1] Si Qin, De-Xing Hou. The Biofunctions of Phytochemicals and Their Applications in Farm Animals: The Nrf2/Keap1 System as a Target[J]. Engineering, 2017, 3(5): 738 -752 .
[2] Baohong Wang, Mingfei Yao, Longxian Lv, Zongxin Ling, Lanjuan Li. The Human Microbiota in Health and Disease[J]. Engineering, 2017, 3(1): 71 -82 .
[3] Guishuai Lv, Ningtao Cheng, Hongyang Wang. The Gut Microbiota, Tumorigenesis, and Liver Diseases[J]. Engineering, 2017, 3(1): 110 -114 .
[4] Dominique Angèle Vuitton, Jean-Charles Dalphin. From Farming to Engineering: The Microbiota and Allergic Diseases[J]. Engineering, 2017, 3(1): 98 -109 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.