Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (1) : 36 -54
Research |
Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography
Yong Yang1(),Kai Wang1,Xiaosong Gu2,Kam W. Leong3()
1. Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
2. Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
3. Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA

The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.

Keywords Extracellular matrix      Stiffness      Nanotopography      Adhesive ligands      Cell behavior     
Corresponding Authors: Yong Yang,Kam W. Leong   
Just Accepted Date: 21 February 2017   Online First Date: 28 February 2017    Issue Date: 02 March 2017
E-mail this article
E-mail Alert
Articles by authors
Yong Yang
Kai Wang
Xiaosong Gu
Kam W. Leong
Cite this article:   
Yong Yang,Kai Wang,Xiaosong Gu, et al. Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography[J]. Engineering, 2017, 3(1): 36 -54 .
URL:     OR
1   Klein G. The extracellular matrix of the hematopoietic microenvironment. Experientia 1995;51(9):914–26
doi: 10.1007/BF01921741
2   Shirato I, Tomino Y, Koide H, Sakai T. Fine structure of the glomerular basement membrane of the rat kidney visualized by high-resolution scanning electron microscopy. Cell Tissue Res 1991;266(1):1–10
doi: 10.1007/BF00678705
3   Hironaka K, Makino H, Yamasaki Y, Ota Z. Renal basement membranes by ultrahigh resolution scanning electron microscopy. Kidney Int 1993;43(2):334–45
doi: 10.1038/ki.1993.51
4   Abrams GA, Schaus SS, Goodman SL, Nealey PF, Murphy CJ. Nanoscale topography of the corneal epithelial basement membrane and Descemet’s membrane of the human. Cornea 2000;19(1):57–64
doi: 10.1097/00003226-200001000-00012
5   Liliensiek SJ, Nealey P, Murphy CJ. Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering. Tissue Eng Part A 2009;15(9):2643–51
doi: 10.1089/ten.tea.2008.0284
6   Kim J, Kim HN, Lim KT, Kim Y, Seonwoo H, Park SH, et alDesigning nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells. Sci Rep 2013;3:3552
doi: 10.1038/srep03552
7   Suki B, Sato S, Parameswaran H, Szabari MV, Takahashi A, Bartolák-Suki E. Emphysema and mechanical stress-induced lung remodeling. Physiology 2013;28(6):404–13
doi: 10.1152/physiol.00041.2013
8   Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, et alUnusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005;289(5):L698–708
doi: 10.1152/ajplung.00084.2005
9   Mwenifumbo S, Stevens MM. ECM interactions with cells from the macro- to nanoscale. In: Gonsalves KE, Halberstadt CR, Laurencin CT and Nair LS, editors Biomedical nanostructures. New York: John Wiley & Sons, Inc.; 2008. p. 225–60.
10   Silver FH, Freeman JW, Seehra GP. Collagen self-assembly and the development of tendon mechanical properties. J Biomech 2003;36(10):1529–53
doi: 10.1016/S0021-9290(03)00135-0
11   Gonçalves CA, Figueiredo MH, Bairos VA. Three-dimensional organization of the elastic fibres in the rat lung. Anat Rec 1995;243(1):63–70
doi: 10.1002/ar.1092430108
12   Ma Z, Ramakrishna S. Nanostructured extracellular matrix. Enc Nanosci Nanotechnol 2004;7:641–55.
13   Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009;324(5935):1673–7
doi: 10.1126/science.1171643
14   Nemir S, West JL. Synthetic materials in the study of cell response to substrate rigidity. Ann Biomed Eng 2010;38(1):2–20
doi: 10.1007/s10439-009-9811-1
15   Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011;4(2):165–78
doi: 10.1242/dmm.004077
16   Gong H, Freddo TF, Johnson M. Age-related changes of sulfated proteoglycans in the normal human trabecular meshwork. Exp Eye Res 1992;55(5):691–709
doi: 10.1016/0014-4835(92)90174-Q
17   Orr AW, Helmke BP, Blackman BR, Schwartz MA. Mechanisms of mechanotransduction. Dev Cell 2006;10(1):11–20
doi: 10.1016/j.devcel.2005.12.006
18   Wozniak MA, Chen CS. Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 2009;10(1):34–43
doi: 10.1038/nrm2592
19   Moore SW, Sheetz MP. Biophysics of substrate interaction: influence on neural motility, differentiation, and repair. Dev Neurobiol 2011;71(11):1090–101
doi: 10.1002/dneu.20947
20   Liu J, Tan Y, Zhang H, Zhang Y, Xu P, Chen J, et al. Soft fibrin gels promote selection and growth of tumorigenic cells. Nat Mater 2012;11(8):734–41
doi: 10.1038/nmat3361
21   Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et alTensional homeostasis and the malignant phenotype. Cancer Cell 2005;8(3):241–54
doi: 10.1016/j.ccr.2005.08.010
22   Parameswaran H, Majumdar A, Suki B. Linking microscopic spatial patterns of tissue destruction in emphysema to macroscopic decline in stiffness using a 3D computational model. PLOS Comput Biol 2011;7(4):e1001125
doi: 10.1371/journal.pcbi.1001125
23   Booth AJ, Hadley R, Cornett AM, Dreffs AA, Matthes SA, Tsui JL, et alAcellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Resp Crit Care 2012;186(9):866–76
doi: 10.1164/rccm.201204-0754OC
24   Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et alFeedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 2010;190(4):693–706
doi: 10.1083/jcb.201004082
25   Marinković A, Mih JD, Park JA, Liu F, Tschumperlin DJ. Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness. Am J Physiol Lung Cell Mol Physiol 2012;303(3):169–80
doi: 10.1152/ajplung.00108.2012
26   Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002;2002(119):pe6
doi: 10.1126/stke.2002.119.pe6
27   Pelham RJ, Wang Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 1997;94(25):13661–5
doi: 10.1073/pnas.94.25.13661
28   Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677–89
doi: 10.1016/j.cell.2006.06.044
29   Chowdhury F, Na S, Li D, Poh Y, Tanaka T, Wang F, et alMaterial properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater 2010;9(1):82–8
doi: 10.1038/nmat2563
30   Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA, et alHarnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 2010;9(6):518–26
doi: 10.1038/nmat2732
31   Holst J, Watson S, Lord MS, Eamegdool SS, Bax DV, Nivison-Smith LB, et alSubstrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat Biotechnol 2010;28(10):1123–8
doi: 10.1038/nbt.1687
32   Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, et alSubstrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 2010;329(5995):1078–81
doi: 10.1126/science.1191035
33   Engler AJ, Griffin MA, Sen S, Boennemann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 2004;166(6):877–87
doi: 10.1083/jcb.200405004
34   Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, et alSelective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303(5662):1352–5
doi: 10.1126/science.1093783
35   Yim EKF, Pang SW, Leong KW. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 2007;313(9):1820–9
doi: 10.1016/j.yexcr.2007.02.031
36   Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et alThe control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 2007;6(12):997–1003
doi: 10.1038/nmat2013
37   Oh S, Brammer KS, Li YSJ, Teng D, Engler AJ, Chien S, et alStem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA 2009;106(7):2130–5
doi: 10.1073/pnas.0813200106
38   Brunetti V, Maiorano G, Rizzello L, Sorce B, Sabella S, Cingolani R, et alNeurons sense nanoscale roughness with nanometer sensitivity. Proc Natl Acad Sci USA 2010;107(14):6264–9
doi: 10.1073/pnas.0914456107
39   McMurray R, Gadegaard N, Tsimbouri P, Burgess K, McNamara L, Tare R, et alNanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 2011;10(8):637–44
doi: 10.1038/nmat3058
40   Lee MR, Kwon KW, Jung H, Kim HN, Suh KY, Kim K, et alDirect differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 2010;31(15):4360–6
doi: 10.1016/j.biomaterials.2010.02.012
41   Moe AAK, Suryana M, Marcy G, Lim SK, Ankam S, Goh JZW, et alMicroarray with micro- and nano-topographies enables identification of the optimal topography for directing the differentiation of primary murine neural progenitor cells. Small 2012;8(19):3050–61
doi: 10.1002/smll.201200490
42   Dang JM, Leong KW. Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv Mater 2007;19(19):2775–9
doi: 10.1002/adma.200602159
43   Discher DE, Janmey P, Wang Y. Tissue cells feel and respond to the stiffness of their substrate. Science 2005;310(5751):1139–43
doi: 10.1126/science.1116995
44   Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 2009;5(1):17–26
doi: 10.1016/j.stem.2009.06.016
45   Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999;20(6):573–88
doi: 10.1016/S0142-9612(98)00209-9
46   Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005;310(5751):1135–8
doi: 10.1126/science.1106587
47   Yang Y, Leong KW. Nanoscale surfacing for regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2(5):478–95
doi: 10.1002/wnan.74
48   Kim DH, Provenzano PP, Smith CL, Levchenko A. Matrix nanotopography as a regulator of cell function. J Cell Biol 2012;197(3):351–60
doi: 10.1083/jcb.201108062
49   Dalby MJ, Gadegaard N, Oreffo RO. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater 2014;13(6):558–69
doi: 10.1038/nmat3980
50   Nguyen AT, Sathe SR, Yim EK. From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. J Phys Condens Matter 2016;28(18):183001
doi: 10.1088/0953-8984/28/18/183001
51   Janson IA, Putnam AJ. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms. J Biomed Mater Res A 2015;103(3):1246–58
doi: 10.1002/jbm.a.35254
52   Elastic moduli data for polycrystalline ceramics [Internet].Gaithersburg: National Institute of Standards and Technology. c2017 [cited 2017 Jan 8]. Available from:
53   Halliday D, Resnick R, Walker J. Fundamentals of physics. 6th ed.New York: John Wiley & Sons, Inc.; 2000.
54   Sahin O, Magonov S, Su C, Quate CF, Solgaard O. An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat Nanotechnol 2007;2(8):507–14
doi: 10.1038/nnano.2007.226
55   Leung L, Chan C, Baek S, Naguib H. Comparison of morphology and mechanical properties of PLGA bioscaffolds. Biomed Mater 2008;3(2):025006
doi: 10.1088/1748-6041/3/2/025006
56   Yang Y, Kulangara K, Lam RTS, Dharmawan R, Leong KW. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior. ACS Nano 2012;6(10):8591–8
doi: 10.1021/nn301713d
57   Kong HJ, Polte TR, Alsberg E, Mooney DJ. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc Natl Acad Sci USA 2005;102(12):4300–5
doi: 10.1073/pnas.0405873102
58   Guo W, Frey MT, Burnham NA, Wang Y. Substrate rigidity regulates the formation and maintenance of tissues. Biophys J 2006;90(6):2213–20
doi: 10.1529/biophysj.105.070144
59   Khatiwala CB, Peyton SR, Putnam AJ. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am J Physiol Cell Physiol 2006;290(6):C1640–50
doi: 10.1152/ajpcell.00455.2005
60   Solon J, Levental I, Sengupta K, Georges PC, Janmey PA. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 2007;93(12):4453–61
doi: 10.1529/biophysj.106.101386
61   Wang H, Dembo M, Wang Y. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol 2000;279(5):C1345–50.
62   Engler AJ, Richert L, Wong JY, Picart C, Discher DE. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf Sci 2004;570(1–2):142–54
doi: 10.1016/j.susc.2004.06.179
63   Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, et alEffects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 2005;60(1):24–34
doi: 10.1002/cm.20041
64   Brown XQ, Ookawa K, Wong JY. Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials 2005;26(16):3123–9
doi: 10.1016/j.biomaterials.2004.08.009
65   Collin O, Tracqui P, Stephanou A, Usson Y, Clément-Lacroix J, Planus E. Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility. J Cell Sci 2006;119(9):1914–25
doi: 10.1242/jcs.02838
66   Reinhart-King CA, Dembo M, Hammer DA. Cell-cell mechanical communication through compliant substrates. Biophys J 2008;95(12):6044–51
doi: 10.1529/biophysj.107.127662
67   Rowlands AS, George PA, Cooper-White JJ. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 2008;295(4):C1037–44
doi: 10.1152/ajpcell.67.2008
68   Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 2006;90(8):3012–8
doi: 10.1529/biophysj.105.073114
69   Wong JY, Velasco A, Rajagopalan P, Pham Q. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 2003;19(5):1908–13
doi: 10.1021/la026403p
70   Ghosh K, Pan Z, Guan E, Ge S, Liu Y, Nakamura T, et alCell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 2007;28(4):671–9
doi: 10.1016/j.biomaterials.2006.09.038
71   Mih JD, Marinkovic A, Liu F, Sharif AS, Tschumperlin DJ. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J Cell Sci 2012;125(24):5974–83
doi: 10.1242/jcs.108886
72   Hsiong SX, Carampin P, Kong HJ, Lee KY, Mooney DJ. Differentiation stage alters matrix control of stem cells. J Biomed Mater Res A 2008;85(1):145–56
doi: 10.1002/jbm.a.31521
73   Gu Y, Ji Y, Zhao Y, Liu Y, Ding F, Gu X, et alThe influence of substrate stiffness on the behavior and functions of Schwann cells in culture. Biomaterials 2012;33(28):6672–81
doi: 10.1016/j.biomaterials.2012.06.006
74   DiMilla PA, Stone JA, Quinn JA, Albelda SM, Lauffenburger DA. Maximal migration of human smooth-muscle cells on fibronectin and type-IV collagen occurs at an intermediate attachment strength. J Cell Biol 1993;122(3):729–37
doi: 10.1083/jcb.122.3.729
75   Peyton SR, Putnam AJ. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J Cell Physiol 2005;204(1):198–209
doi: 10.1002/jcp.20274
76   Calve S, Simon HG. Biochemical and mechanical environment cooperatively regulate skeletal muscle regeneration. FASEB J 2012;26(6):2538–45
doi: 10.1096/fj.11-200162
77   Boontheekul T, Hill EE, Kong HJ, Mooney DJ. Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Eng 2007;13(7):1431–42
doi: 10.1089/ten.2006.0356
78   Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et alSubstrate modulus directs neural stem cell behavior. Biophys J 2008;95(9):4426–38
doi: 10.1529/biophysj.108.132217
79   Boonen KJM, Rosaria-Chak KY, Baaijens FPT, van der Schaft DWJ, Post MJ. Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am J Physiol Cell Physiol 2009;296(6):C1338–45
doi: 10.1152/ajpcell.00015.2009
80   Huang C, Butler PJ, Tong S, Muddana HS, Bao G, Zhang S. Substrate stiffness regulates cellular uptake of nanoparticles. Nano Lett 2013;13(4):1611–5
doi: 10.1021/nl400033h
81   Balestrini JL, Chaudhry S, Sarrazy V, Koehler A, Hinz B. The mechanical memory of lung myofibroblasts. Integr Biol 2012;4(4):410–21
doi: 10.1039/c2ib00149g
82   Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat Mater 2014;13(6):645–52
doi: 10.1038/nmat3889
83   Lee J, Abdeen AA, Kilian KA. Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment. Sci Rep 2014;4:5188
doi: 10.1038/srep05188
84   Li CX, Talele NP, Boo S, Koehler A, Knee-Walden E, Balestrini JL, et alMicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat Mater 2016. Epub 2016 Oct 31
doi: 10.1038/nmat4780
85   Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, et alExtracellular-matrix tethering regulates stem-cell fate. Nat Mater 2012;11(7):642–9
doi: 10.1038/nmat3339
86   Houseman BT, Mrksich M. The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion. Biomaterials 2001;22(9):943–55
doi: 10.1016/S0142-9612(00)00259-3
87   Keselowsky BG, Collard DM, García AJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci USA 2005;102(17):5953–7
doi: 10.1073/pnas.0407356102
88   Li B, Moshfegh C, Lin Z, Albuschies J, Vogel V. Mesenchymal stem cells exploit extracellular matrix as mechanotransducer. Sci Rep 2013;3:2425
doi: 10.1038/srep02425
89   Wen J, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, et alInterplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 2014;13(10):979–87
doi: 10.1038/nmat4051
90   Lovett DB, Shekhar N, Nickerson JA, Roux KJ, Lele TP. Modulation of nuclear shape by substrate rigidity. Cell Mol Bioeng 2013;6(2):230–8
doi: 10.1007/s12195-013-0270-2
91   Maloney JM, Walton EB, Bruce CM, van Vliet KJ. Influence of finite thickness and stiffness on cellular adhesion-induced deformation of compliant substrata. Phys Rev E 2008;78(4):041923
doi: 10.1103/PhysRevE.78.041923
92   Merkel R, Kirchgeβner N, Cesa CM, Hoffmann B. Cell force microscopy on elastic layers of finite thickness. Biophys J 2007;93(9):3314–23
doi: 10.1529/biophysj.107.111328
93   Buxboim A, Rajagopal K, Brown AEX, Discher DE. How deeply cells feel: methods for thin gels. J Phys Condens Matter 2010;22(19):194116
doi: 10.1088/0953-8984/22/19/194116
94   Franck C, Maskarinec SA, Tirrell DA, Ravichandran G. Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PLoS One 2011;6(3):e17833
doi: 10.1371/journal.pone.0017833
95   Roco MC. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 2003;14(3):337–46
doi: 10.1016/S0958-1669(03)00068-5
96   Park J, Bauer S, Von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 2007;7(6):1686–91
doi: 10.1021/nl070678d
97   Wang K, Bruce A, Mezan R, Kadiyala A, Wang L, Dawson J, et alNanotopographical modulation of cell function through nuclear deformation. ACS Appl Mater Interfaces 2016;8(8):5082–92
doi: 10.1021/acsami.5b10531
98   Lim JY, Hansen JC, Siedlecki CA, Runt J, Donahue HJ. Human foetal osteoblastic cell response to polymer-demixed nanotopographic interfaces. J R Soc Interface 2005;2(2):97–108
doi: 10.1098/rsif.2004.0019
99   Lim JY, Hansen JC, Siedlecki CA, Hengstebeck RW, Cheng J, Winograd N, et alOsteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability. Biomacromolecules 2005;6(6):3319–27
doi: 10.1021/bm0503423
100   Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis ASG. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 2002;23(14):2945–54
doi: 10.1016/S0142-9612(01)00424-0
101   Dalby MJ, Marshall GE, Johnstone HJH, Affrossman S, Riehle MO. Interactions of human blood and tissue cell types with 95-nm-high nanotopography. IEEE Trans Nanobioscience 2002;1(1):18–23
doi: 10.1109/TNB.2002.806933
102   Frey MT, Tsai IY, Russell TP, Hanks SK, Wang YL. Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. Biophys J 2006;90(10):3774–82
doi: 10.1529/biophysj.105.074526
103   Dalby MJ, Yarwood SJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS. Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 2002;276(1):1–9
doi: 10.1006/excr.2002.5498
104   Csaderova L, Martines E, Seunarine K, Gadegaard N, Wilkinson CDW, Riehle MO. A biodegradable and biocompatible regular nanopattern for large-scale selective cell growth. Small 2010;6(23):2755–61
doi: 10.1002/smll.201000193
105   Chen W, Villa-Diaz LG, Sun Y, Weng S, Kim JK, Lam RHW, et alNanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 2012;6(5):4094–103
doi: 10.1021/nn3004923
106   Thakar RG, Ho F, Huang NF, Liepmann D, Li S. Regulation of vascular smooth muscle cells by micropatterning. Biochem Biophys Res Commun 2003;307(4):883–90
doi: 10.1016/S0006-291X(03)01285-3
107   Charest JL, Eliason MT, García AJ, King WP, Talin AA, Simmons BA. Polymer cell culture substrates with combined nanotopographical patterns and micropatterned chemical domains. J Vac Sci Technol B 2005;23(6):3011–4
doi: 10.1116/1.2127951
108   Zhu B, Zhang Q, Lu Q, Xu Y, Yin J, Hu J, et alNanotopographical guidance of C6 glioma cell alignment and oriented growth. Biomaterials 2004;25(18):4215–23
doi: 10.1016/j.biomaterials.2003.11.020
109   Yim EKF, Reano RM, Pang SW, Yee AF, Chen CS, Leong KW. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 2005;26(26):5405–13
doi: 10.1016/j.biomaterials.2005.01.058
110   Gerecht S, Bettinger CJ, Zhang Z, Borenstein JT, Vunjak-Novakovic G, Langer R. The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials 2007;28(28):4068–77
doi: 10.1016/j.biomaterials.2007.05.027
111   Bettinger CJ, Zhang Z, Gerecht S, Borenstein JT, Langer R. Enhancement of in vitro capillary tube formation by substrate nanotopography. Adv Mater 2008;20(1):99–103
doi: 10.1002/adma.200702487
112   Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 2003;116(10):1881–92
doi: 10.1242/jcs.00383
113   Ranucci CS, Moghe PV. Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density. J Biomed Mater Res 2001;54(2):149–61
doi: 10.1002/1097-4636(200102)54:2<149::AID-JBM1>3.0.CO;2-O
114   Prina-Mello A, Volkov Y, Kelleher D, Prendergast PJ. Comparative locomotory behavior of T lymphocytes versus T lymphoma cells on flat and grooved surfaces. Ann Biomed Eng 2003;31(9):1106–13
doi: 10.1114/1.1603261
115   Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett 2008;8(3):786–93
doi: 10.1021/nl072572o
116   Liliensiek SJ, Wood JA, Yong J, Auerbach R, Nealey PF, Murphy CJ. Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials 2010;31(20):5418–26
doi: 10.1016/j.biomaterials.2010.03.045
117   Tan J, Saltzman WM. Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry. Biomaterials 2002;23(15):3215–25
doi: 10.1016/S0142-9612(02)00074-1
118   Kim DH, Han K, Gupta K, Kwon KW, Suh KY, Levchenko A. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 2009;30(29):5433–44
doi: 10.1016/j.biomaterials.2009.06.042
119   Lenhert S, Meier MB, Meyer U, Chi L, Wiesmann HP. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by langmuir-blodgett lithography. Biomaterials 2005;26(5):563–70
doi: 10.1016/j.biomaterials.2004.02.068
120   Sun X, Driscoll MK, Guven C, Das S, Parent CA, Fourkas JT, et alAsymmetric nanotopography biases cytoskeletal dynamics and promotes unidirectional cell guidance. Proc Natl Acad Sci USA 2015;112(41):12557–62
doi: 10.1073/pnas.1502970112
121   Wang PY, Thissen H, Tsai WB. The roles of RGD and grooved topography in the adhesion, morphology, and differentiation of C2C12 skeletal myoblasts. Biotechnol Bioeng 2012;109(8):2104–15
doi: 10.1002/bit.24452
122   Patel S, Kurpinski K, Quigley R, Gao H, Hsiao BS, Poo MM, et alBioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett 2007;7(7):2122–8
doi: 10.1021/nl071182z
123   Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26(15):2603–10
doi: 10.1016/j.biomaterials.2004.06.051
124   Bryant DM, Mostov KE. From cells to organs: building polarized tissue. Nat Rev Mol Cell Biol 2008;9(11):887–901
doi: 10.1038/nrm2523
125   Petrie RJ, Doyle AD, Yamada KM. Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 2009;10(8):538–49
doi: 10.1038/nrm2729
126   Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Dalby MJ. Regulation of implant surface cell adhesion: characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates. J Orthop Res 2007;25(2):273–82
doi: 10.1002/jor.20319
127   Wang S, Wang H, Jiao J, Chen K, Owens GE, Kamei K, et alThree-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew Chem Int Ed 2009;48(47):8970–3
doi: 10.1002/anie.200901668
128   Wang S, Liu K, Liu J, Yu Z, Xu X, Zhao L, et alHighly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed 2011;50(13):3084–8
doi: 10.1002/anie.201005853
129   Liu X, Chen L, Liu H, Yang G, Zhang P, Han D, et alBio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture. NPG Asia Mater 2013;5:e63
doi: 10.1038/am.2013.43
130   Chen W, Weng S, Zhang F, Allen S, Li X, Bao L, et alNanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano 2013;7(1):566–75
doi: 10.1021/nn304719q
131   Shi L, Wang K, Yang Y. Adhesion-based tumor cell capture using nanotopography. Colloids Surf B Biointerfaces 2016;147:291–9
doi: 10.1016/j.colsurfb.2016.08.008
132   Kulangara K, Adler AF, Wang H, Chellappan M, Hammett E, Yasuda R, et alThe effect of substrate topography on direct reprogramming of fibroblasts to induced neurons. Biomaterials 2014;35(20):5327–36
doi: 10.1016/j.biomaterials.2014.03.034
133   Huang C, Ozdemir T, Xu L, Butler PJ, Siedlecki CA, Brown JL, et alThe role of substrate topography on the cellular uptake of nanoparticles. J Biomed Mater Res Part B 2016;104(3):488–95
doi: 10.1002/jbm.b.33397
134   Iyer S, Gaikwad RM, Subba-Rao V, Woodworth CD, Sokolov I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat Nanotechnol 2009;4(6):389–93
doi: 10.1038/nnano.2009.77
135   Fischer KE, Alemán BJ, Tao SL, Hugh Daniels R, Li EM, Bünger MD, et alBiomimetic nanowire coatings for next generation adhesive drug delivery systems. Nano Lett 2009;9(2):716–20
doi: 10.1021/nl803219f
136   Jeon H, Koo S, Reese WM, Loskill P, Grigoropoulos CP, Healy KE. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat Mater 2015;14(9):918–23
doi: 10.1038/nmat4342
137   Teo BKK, Goh KJ, Ng ZJ, Koo S, Yim EKF. Functional reconstruction of corneal endothelium using nanotopography for tissue-engineering applications. Acta Biomater 2012;8(8):2941–52
doi: 10.1016/j.actbio.2012.04.020
138   Watari S, Hayashi K, Wood JA, Russell P, Nealey PF, Murphy CJ, et alModulation of osteogenic differentiation in hMSCs cells by submicron topographically-patterned ridges and grooves. Biomaterials 2012;33(1):128–36
doi: 10.1016/j.biomaterials.2011.09.058
139   Wood JA, Ly I, Borjesson DL, Nealey PF, Russell P, Murphy CJ. The modulation of canine mesenchymal stem cells by nano-topographic cues. Exp Cell Res 2012;318(19):2438–45
doi: 10.1016/j.yexcr.2012.06.022
140   Janson IA, Kong YP, Putnam AJ. Nanotopographic substrates of poly(methyl methacrylate) do not strongly influence the osteogenic phenotype of mesenchymal stem cells in vitro. PLoS One 2014;9(3):e90719
doi: 10.1371/journal.pone.0090719
141   Clements LR, Wang PY, Tsai WB, Thissen H, Voelcker NH. Electrochemistry-enabled fabrication of orthogonal nanotopography and surface chemistry gradients for high-throughput screening. Lab Chip 2012;12(8):1480–6
doi: 10.1039/c2lc20732j
142   Yang J, Rose FRAJ, Gadegaard N, Alexander MR. A high-throughput assay of cell-surface interactions using topographical and chemical gradients. Adv Mater 2009;21(3):300–4
doi: 10.1002/adma.200801942
143   Ohara PT, Buck RC. Contact guidance in vitro: a light, transmission, and scanning electron microscopic study. Exp Cell Res 1979;121(2):235–49
doi: 10.1016/0014-4827(79)90002-8
144   Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, et alNanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci USA 2010;107(2):565–70
doi: 10.1073/pnas.0906504107
145   Ahn EH, Kim Y, Kshitiz, An SS, Afzal J, Lee S, et alSpatial control of adult stem cell fate using nanotopographic cues. Biomaterials 2014;35(8):2401–10
doi: 10.1016/j.biomaterials.2013.11.037
146   Pan HA, Hung YC, Sui YP, Huang GS. Topographic control of the growth and function of cardiomyoblast H9c2 cells using nanodot arrays. Biomaterials 2012;33(1):20–8
doi: 10.1016/j.biomaterials.2011.09.054
147   You MH, Kwak MK, Kim DH, Kim K, Levchenko A, Kim DY, et alSynergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 2010;11(7):1856–62
doi: 10.1021/bm100374n
148   Crouch AS, Miller D, Luebke KJ, Hu W. Correlation of anisotropic cell behaviors with topographic aspect ratio. Biomaterials 2009;30(8):1560–7
doi: 10.1016/j.biomaterials.2008.11.041
149   Hu W, Yim EKF, Reano RM, Leong KW, Pang SW. Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior. J Vac Sci Technol B 2005;23(6):2984–9
doi: 10.1116/1.2121729
150   Fraser SA, Ting YH, Mallon KS, Wendt AE, Murphy CJ, Nealey PF. Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media. J Biomed Mater Res A 2008;86A(3):725–35
doi: 10.1002/jbm.a.31519
151   Uttayarat P, Toworfe GK, Dietrich F, Lelkes PI, Composto RJ. Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J Biomed Mater Res A 2005;75A(3):668–80
doi: 10.1002/jbm.a.30478
152   Wong ST, Teo SK, Park S, Chiam KH, Yim EKF. Anisotropic rigidity sensing on grating topography directs human mesenchymal stem cell elongation. Biomech Model Mechanobiol 2014;13(1):27–39
doi: 10.1007/s10237-013-0483-2
153   Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. Geometric control of cell life and death. Science 1997;276(5317):1425–8
doi: 10.1126/science.276.5317.1425
154   McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004;6(4):483–95
doi: 10.1016/S1534-5807(04)00075-9
155   Dembo M, Wang Y. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 1999;76(4):2307–16
doi: 10.1016/S0006-3495(99)77386-8
156   Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, et alMechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 2013;15(6):637–46
doi: 10.1038/ncb2756
157   Ma X, Schickel ME, Stevenson MD, Sarang-Sieminski AL, Gooch KJ, Ghadiali SN, et alFibers in the extracellular matrix enable long-range stress transmission between cells. Biophys J 2013;104(7):1410–8
doi: 10.1016/j.bpj.2013.02.017
158   Harris A, Wild P, Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 1980;208(4440):177–9
doi: 10.1126/science.6987736
159   Chalut KJ, Kulangara K, Giacomelli MG, Wax A, Leong KW. Deformation of stem cell nuclei by nanotopographical cues. Soft Matter 2010;6(8):1675–81
doi: 10.1039/b921206j
160   Yim EKF, Darling EM, Kulangara K, Guilak F, Leong KW. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 2010;31(6):1299–306
doi: 10.1016/j.biomaterials.2009.10.037
161   Tzvetkova-Chevolleau T, Stéphanou A, Fuard D, Ohayon J, Schiavone P, Tracqui P. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 2008;29(10):1541–51
doi: 10.1016/j.biomaterials.2007.12.016
162   Forrest JA, Dalnoki-Veress K. The glass transition in thin polymer films. Adv Colloid Interface Sci 2001;94(1–3):167–95
doi: 10.1016/S0001-8686(01)00060-4
163   Van Workum K, de Pablo JJ. Computer simulation of the mechanical properties of amorphous polymer nanostructures. Nano Lett 2003;3(10):1405–10
doi: 10.1021/nl034458l
164   Stafford CM, Harrison C, Beers KL, Karim A, Amis EJ, Vanlandingham MR, et alA buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat Mater 2004;3(8):545–50
doi: 10.1038/nmat1175
165   Stafford CM, Vogt BD, Harrison C, Julthongpiput D, Huang R. Elastic moduli of ultrathin amorphous polymer films. Macromolecules 2006;39(15):5095–9
doi: 10.1021/ma060790i
166   Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z, et alMechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 2010;7(9):733–6
doi: 10.1038/nmeth.1487
167   Park J, Kim HN, Kim DH, Levchenko A, Suh KY. Quantitative analysis of the combined effect of substrate rigidity and topographic guidance on cell morphology. IEEE Trans Nanobioscience 2012;11(1):28–36
doi: 10.1109/TNB.2011.2165728
168   Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, et alForce and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 2001;3(5):466–72
doi: 10.1038/35074532
169   Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 2003;100(4):1484–9
doi: 10.1073/pnas.0235407100
170   du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Siberzan P, et alForce mapping in epithelial cell migration. Proc Natl Acad Sci USA 2005;102(7):2390–5
doi: 10.1073/pnas.0408482102
171   Ghassemi S, Meacci G, Liu S, Gondarenko AA, Mathur A, Roca-Cusachs P, et alCells test substrate rigidity by local contractions on submicrometer pillars. Proc Natl Acad Sci USA 2012;109(14):5328–33
doi: 10.1073/pnas.1119886109
172   Yang M, Sniadecki NJ, Chen C. Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv Mater 2007;19(20):3119–23
doi: 10.1002/adma.200701956
173   Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci USA 2007;104(20):8281–6
doi: 10.1073/pnas.0702259104
174   Sun Y, Yong KM, Villa-Diaz LG, Zhang X, Chen W, Philson R, et alHippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat Mater 2014;13(6):599–604
doi: 10.1038/nmat3945
175   Han SJ, Bielawski KS, Ting LH, Rodriguez ML, Sniadecki NJ. Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys J 2012;103(4):640–8
doi: 10.1016/j.bpj.2012.07.023
176   Saez A, Buguin A, Silberzan P, Ladoux B. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 2005;89(6):L52–4
doi: 10.1529/biophysj.105.071217
177   Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110(6):673–87
doi: 10.1016/S0092-8674(02)00971-6
178   Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et alCell migration: integrating signals from front to back. Science 2003;302(5651):1704–9
doi: 10.1126/science.1092053
179   Zaidel-Bar R, Cohen M, Addadi L, Geiger B. Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans 2004;32(3):416–20
doi: 10.1042/bst0320416
180   Galbraith CG, Yamada KM, Sheetz MP. The relationship between force and focal complex development. J Cell Biol 2002;159(4):695–705
doi: 10.1083/jcb.200204153
181   Besser A, Safran SA. Force-induced adsorption and anisotropic growth of focal adhesions. Biophys J 2006;90(10):3469–84
doi: 10.1529/biophysj.105.074377
182   Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, et alFocal contacts as mechanosensors. J Cell Biol 2001;153(6):1175–86
doi: 10.1083/jcb.153.6.1175
183   Nobes CD, Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 1995;81(1):53–62
doi: 10.1016/0092-8674(95)90370-4
184   DeMali KA, Burridge K. Coupling membrane protrusion and cell adhesion. J Cell Sci 2003;116(12):2389–97
doi: 10.1242/jcs.00605
185   Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 2008;10(9):1039–50
doi: 10.1038/ncb1763
186   Plotnikov SV, Pasapera AM, Sabass B, Waterman CM. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 2012;151(7):1513–27
doi: 10.1016/j.cell.2012.11.034
187   Coyer SR, Singh A, Dumbauld DW, Calderwood DA, Craig SW, Delamarche E, et alNanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J Cell Sci 2012;125(21):5110–23
doi: 10.1242/jcs.108035
188   Stricker J, Aratyn-Schaus Y, Oakes PW, Gardel ML. Spatiotemporal constraints on the force-dependent growth of focal adhesions. Biophys J 2011;100(12):2883–93
doi: 10.1016/j.bpj.2011.05.023
189   Cary LA, Chang J, Guan J. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci 1996;109(Pt 7):1787–94.
190   Xu B, Song G, Ju Y, Li X, Song Y, Watanabe S. RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J Cell Physiol 2012;227(6):2722–9
doi: 10.1002/jcp.23016
191   Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res 2007;313(1):22–37
doi: 10.1016/j.yexcr.2006.09.013
192   Wang H, Dembo M, Hanks SK, Wang Y. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 2001;98(20):11295–300
doi: 10.1073/pnas.201201198
193   Pasapera AM, Schneider IC, Rericha E, Schlaepfer DD, Waterman CM. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol 2010;188(6):877–90
doi: 10.1083/jcb.200906012
194   Provenzano PP, Inman DR, Eliceiri KW, Keely PJ. Matrix density-induced mechanoregulation of breast cell phenotype, signaling and gene expression through a FAK-ERK linkage. Oncogene 2009;28(49):4326–43
doi: 10.1038/onc.2009.299
195   Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 2014;15(12):802–12
doi: 10.1038/nrm3896
196   Teo BK, Wong ST, Lim CK, Kung TY, Yap CH, Ramagopal Y, et alNanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 2013;7(6):4785–98
doi: 10.1021/nn304966z
197   Kulangara K, Yang Y, Yang J, Leong KW. Nanotopography as modulator of human mesenchymal stem cell function. Biomaterials 2012;33(20):4998–5003
doi: 10.1016/j.biomaterials.2012.03.053
198   Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009;10(1):21–33
doi: 10.1038/nrm2593
199   Burridge K, Wennerberg K. Rho and Rac take center stage. Cell 2004;116(2):167–79
doi: 10.1016/S0092-8674(04)00003-0
200   Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002;3(5):349–63
doi: 10.1038/nrm809
201   Treiser MD, Yang EH, Gordonov S, Cohen DM, Androulakis IP, Kohn J, et alCytoskeleton-based forecasting of stem cell lineage fates. Proc Natl Acad Sci USA 2010;107(2):610–5
doi: 10.1073/pnas.0909597107
202   Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. Nat Mater 2014;13(6):547–57. Erratum in: Nat Mater 2014;13(7):756
doi: 10.1038/nmat3937
203   Wang N, Tolić-Nørrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, et alCell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol 2002;282(3):C606–16
doi: 10.1152/ajpcell.00269.2001
204   Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci USA 2010;107(11):4872–7
doi: 10.1073/pnas.0903269107
205   Wang JH, Lin JS. Cell traction force and measurement methods. Biomech Model Mechanobiol 2007;6(6):361–71
doi: 10.1007/s10237-006-0068-4
206   Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, et al. Traction forces and rigidity sensing regulate cell functions. Soft Matter 2008;4(9):1836–43
doi: 10.1039/b804103b
207   Lo C, Wang H, Dembo M, Wang Y. Cell movement is guided by the rigidity of the substrate. Biophys J 2000;79(1):144–52
doi: 10.1016/S0006-3495(00)76279-5
208   Klein EA, Yin L, Kothapalli D, Castagnino P, Byfield FJ, Xu T, et alCell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 2009;19(18):1511–8
doi: 10.1016/j.cub.2009.07.069
209   Jay PY, Pham PA, Wong SA, Elson EL. A mechanical function of myosin II in cell motility. J Cell Sci 1995;108(Pt 1):387–93.
210   Keung AJ, de Juan-Pardo EM, Schaffer DV, Kumar S. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 2011;29(11):1886–97
doi: 10.1002/stem.746
211   Wang K, He X, Linthicum W, Mezan R, Wang L, Rojanasakul Y, et alCarbon nanotubes induced fibrogenesis on nanostructured substrates. Environ Sci Nano 2017
doi: 10.1039/c6en00402d
212   Ankam S, Lim CK, Yim EK. Actomyosin contractility plays a role in MAP2 expression during nanotopography-directed neuronal differentiation of human embryonic stem cells. Biomaterials 2015;47:20–8
doi: 10.1016/j.biomaterials.2015.01.003
213   Kulangara K, Yang J, Chellappan M, Yang Y, Leong KW. Nanotopography alters nuclear protein expression, proliferation and differentiation of human mesenchymal stem/stromal cells. PLoS One 2014;9(12):e114698
doi: 10.1371/journal.pone.0114698
214   Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 1997;94(3):849–54
doi: 10.1073/pnas.94.3.849
215   Wormer DB, Davis KA, Henderson JH, Turner CE. The focal adhesion-localized CdGAP regulates matrix rigidity sensing and durotaxis. PLoS One 2014;9(3):e91815
doi: 10.1371/journal.pone.0091815
216   Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA 2002;99(4):1972–7
doi: 10.1073/pnas.032668799
217   McBride SH, Knothe Tate ML. Modulation of stem cell shape and fate A: the role of density and seeding protocol on nucleus shape and gene expression. Tissue Eng Part A 2008;14(9):1561–72
doi: 10.1089/ten.tea.2008.0112
218   Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE. Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci USA 2007;104(40):15619–24
doi: 10.1073/pnas.0702576104
219   Sims JR, Karp S, Ingber DE. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. J Cell Sci 1992;103(Pt 4):1215–22.
220   Dahl KN, Ribeiro AJ, Lammerding J. Nuclear shape, mechanics, and mechanotransduction. Circ Res 2008;102(11):1307–18
doi: 10.1161/CIRCRESAHA.108.173989
221   Dalby MJ, Riehle MO, Yarwood SJ, Wilkinson CDW, Curtis ASG. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp Cell Res 2003;284(2):274–80
doi: 10.1016/S0014-4827(02)00053-8
222   Roca-Cusachs P, Alcaraz J, Sunyer R, Samitier J, Farré R, Navajas D. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys J 2008;94(12):4984–95
doi: 10.1529/biophysj.107.116863
223   Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 2006;7(4):265–75
doi: 10.1038/nrm1890
224   Yang Y, Kulangara K, Sia J, Wang L, Leong KW. Engineering of a microfluidic cell culture platform embedded with nanoscale features. Lab Chip 2011;11(9):1638–46
doi: 10.1039/c0lc00736f
225   Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et alRole of YAP/TAZ in mechanotransduction. Nature 2011;474(7350):179–83
doi: 10.1038/nature10137
226   Wada K, Itoga K, Okano T, Yonemura S, Sasaki H. Hippo pathway regulation by cell morphology and stress fibers. Development 2011;138(18):3907–14
doi: 10.1242/dev.070987
227   Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 2011;13(8):877–83
doi: 10.1038/ncb2303
228   Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, et alA mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 2013;154(5):1047–59
doi: 10.1016/j.cell.2013.07.042
229   Liu F, Lagares D, Choi KM, Stopfer L, Marinkovic A, Vrbanac V, et alMechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung C 2015;308(4):L344–57
doi: 10.1152/ajplung.00300.2014
230   Tremblay AM, Camargo FD. Hippo signaling in mammalian stem cells. Semin Cell Dev Biol 2012;23(7):818–26
doi: 10.1016/j.semcdb.2012.08.001
231   Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, et alThe role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 2010;24(11):1106–18
doi: 10.1101/gad.1903310
232   Mosqueira D, Pagliari S, Uto K, Ebara M, Romanazzo S, Escobedo-Lucea C, et alHippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS Nano 2014;8(3):2033–47
doi: 10.1021/nn4058984
233   Zhao B, Li L, Wang L, Wang C, Yu J, Guan K. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 2012;26(1):54–68
doi: 10.1101/gad.173435.111
234   Song L, Wang K, Li Y, Yang Y. Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells. Colloids Surf B 2016;148:49–58
doi: 10.1016/j.colsurfb.2016.08.041
235   Musah S, Wrighton PJ, Zaltsman Y, Zhong X, Zorn S, Parlato MB, et alSubstratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc Natl Acad Sci USA 2014;111(38):13805–10
doi: 10.1073/pnas.1415330111
236   Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Dalby MJ. The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci–Mater Med 2007;18(2):399–404
doi: 10.1007/s10856-006-0705-6
237   Gray DS, Tien J, Chen CS. Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J Biomed Mater Res A 2003;66A(3):605–14
doi: 10.1002/jbm.a.10585
238   Trichet L, Le Digabel J, Hawkins RJ, Vedula SR, Gupta M, Ribrault C, et alEvidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc Natl Acad Sci USA 2012;109(18):6933–8
doi: 10.1073/pnas.1117810109
239   Sunyer R, Jin AJ, Nossal R, Sackett DL. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS One 2012;7(10):e46107
doi: 10.1371/journal.pone.0046107
240   Zaari N, Rajagopalan P, Kim SK, Engler AJ, Wong JY. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv Mater 2004;16(23–24):2133–7
doi: 10.1002/adma.200400883
241   Park J, Kim DH, Kim HN, Wang CJ, Kwak MK, Hur E, et alDirected migration of cancer cells guided by the graded texture of the underlying matrix. Nat Mater 2016;15(7):792–801
doi: 10.1038/nmat4586
242   Kim DH, Seo CH, Han K, Kwon KW, Levchenko A, Suh KY. Guided cell migration on microtextured substrates with variable local density and anisotropy. Adv Funct Mater 2009;19(10):1579–86
doi: 10.1002/adfm.200801174
243   Khung YL, Barritt G, Voelcker NH. Using continuous porous silicon gradients to study the influence of surface topography on the behaviour of neuroblastoma cells. Exp Cell Res 2008;314(4):789–800
doi: 10.1016/j.yexcr.2007.10.015
244   Arnold M, Hirschfeld-Warneken VC, Lohmüeller T, Heil P, Blüemmel J, Cavalcanti-Adam EA, et alInduction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett 2008;8(7):2063–9
doi: 10.1021/nl801483w
245   Arnold M, Cavalcanti-Adam EA, Glass R, Blüemmel J, Eck W, Kantlehner M, et alActivation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 2004;5(3):383–8
doi: 10.1002/cphc.200301014
246   Arnold M, Schwieder M, Blüemmel J, Cavalcanti-Adam EA, López-Garcia M, Kessler H, et alCell interactions with hierarchically structured nano-patterned adhesive surfaces. Soft Matter 2009;5(1):72–7
doi: 10.1039/B815634D
247   Xiong J, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, et alCrystal structure of the extracellular segment of integrin αVβ3. Science 2001;294(5541):339–45
doi: 10.1126/science.1064535
248   Gautrot JE, Malmström J, Sundh M, Margadant C, Sonnenberg A, Sutherland DS. The nanoscale geometrical maturation of focal adhesions controls stem cell differentiation and mechanotransduction. Nano Lett 2014;14(7):3945–52
doi: 10.1021/nl501248y
249   Bischofs IB, Safran SA, Schwarz US. Elastic interactions of active cells with soft materials. Phys Rev E 2004;69(2):021911
doi: 10.1103/PhysRevE.69.021911
250   Bischofs IB, Schwarz US. Cell organization in soft media due to active mechanosensing. Proc Natl Acad Sci USA 2003;100(16):9274–9
doi: 10.1073/pnas.1233544100
251   Dalby MJ, Biggs MJ, Gadegaard N, Kalna G, Wilkinson CD, Curtis AS. Nanotopographical stimulation of mechanotransduction and changes in interphase centromere positioning. J Cell Biochem 2007;100(2):326–38
doi: 10.1002/jcb.21058
252   Kilian KA, Mrksich M. Directing stem cell fate by controlling the affinity and density of ligand–receptor interactions at the biomaterials interface. Angew Chem Int Ed 2012;51(20):4891–5
doi: 10.1002/anie.201108746
253   Razafiarison T, Silván U, Meier D, Snedeker JG. Surface-driven collagen self-assembly affects early osteogenic stem cell signaling. Adv Healthc Mater 2016;5(12):1481–92
doi: 10.1002/adhm.201600128
254   Siegel RW. Creating nanophase materials. Sci Am 1996;275(6):74–9
doi: 10.1038/scientificamerican1296-74
255   Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 2004;7(3):291–301
doi: 10.1089/10763270152044152
256   Puckett SD, Lee PP, Ciombor DM, Aaron RK, Webster TJ. Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices. Acta Biomater 2010;6(6):2352–62
doi: 10.1016/j.actbio.2009.12.016
257   Yang Y, Liu D, Xie Y, Lee LJ, Tomasko DL. Low-temperature fusion of polymeric nanostructures using carbon dioxide. Adv Mater 2007;19(2):251–4
doi: 10.1002/adma.200601481
258   Yang Y, Cheng MMC, Hu X, Liu D, Goyette RJ, Lee LJ, et alLow-pressure carbon dioxide enhanced polymer chain mobility below the bulk glass transition temperature. Macromolecules 2007;40(4):1108–11
doi: 10.1021/ma061492o
259   den Braber ET, de Ruijter JE, Ginsel LA, von Recum AF, Jansen JA. Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. J Biomed Mater Res 1998;40(2):291–300
doi: 10.1002/(SICI)1097-4636(199805)40:2<291::AID-JBM14>3.0.CO;2-P
260   Andersson AS, Brink J, Lidberg U, Sutherland DS. Influence of systematically varied nanoscale topography on the morphology of epithelial cells. IEEE Trans Nanobioscience 2003;2(2):49–57
doi: 10.1109/TNB.2003.813934
261   Choudhary S, Haberstroh KM, Webster TJ. Enhanced functions of vascular cells on nanostructured Ti for improved stent applications. Tissue Eng 2007;13(7):1421–30
doi: 10.1089/ten.2006.0376
262   Koh LB, Rodriguez I, Venkatraman SS. Conformational behavior of fibrinogen on topographically modified polymer surfaces. Phys Chem Chem Phys 2010;12(35):10301–8
doi: 10.1039/c001747g
263   Norde W, Horbett TA, Brash JL. Proteins at interfaces III: introductory overview. In: Horbett T, Brash JL, Norde W, editors Proteins at interfaces III state of the art. Washington, DC: American Chemical Society; 2012. p. 1–34
doi: 10.1021/bk-2012-1120.ch001
264   Chirasatitsin S, Engler AJ. Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping. J Phys Condens Matter 2010;22(19):194102
doi: 10.1088/0953-8984/22/19/194102
265   Berning S, Willig KI, Steffens H, Dibaj P, Hell SW. Nanoscopy in a living mouse brain. Science 2012;335(6068):551
doi: 10.1126/science.1215369
266   Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang M, et alMeasuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 2010;466(7303):263–6
doi: 10.1038/nature09198
267   Heil P, Spatz JP. Lateral shear forces applied to cells with single elastic micropillars to influence focal adhesion dynamics. J Phys Condens Matter 2010;22(19):194108
doi: 10.1088/0953-8984/22/19/194108
268   Thompson MT, Berg MC, Tobias IS, Lichter JA, Rubner MF, Van Vliet KJ. Biochemical functionalization of polymeric cell substrata can alter mechanical compliance. Biomacromolecules 2006;7(6):1990–5
doi: 10.1021/bm060146b
269   Lee M, Kang DK, Yang HK, Park KH, Choe SY, Kang C, et alProtein nanoarray on ProlinkerTM surface constructed by atomic force microscopy dip-pen nanolithography for analysis of protein interaction. Proteomics 2006;6(4):1094–103
doi: 10.1002/pmic.200500392
270   Sahin O, Erina N. High-resolution and large dynamic range nanomechanical mapping in tapping-mode atomic force microscopy. Nanotechnology 2008;19(44):445717
doi: 10.1088/0957-4484/19/44/445717
271   Ankam S, Suryana M, Chan LY, Moe AA, Teo BK, Law JB, et alSubstrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater 2013;9(1):4535–45
doi: 10.1016/j.actbio.2012.08.018
272   Tan KK, Tann JY, Sathe SR, Goh SH, Ma D, Goh EL, et alEnhanced differentiation of neural progenitor cells into neurons of the mesencephalic dopaminergic subtype on topographical patterns. Biomaterials 2015;43:32–43
doi: 10.1016/j.biomaterials.2014.11.036
273   Unadkat HV, Hulsman M, Cornelissen K, Papenburg BJ, Truckenmuller RK, Carpenter AE, et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci USA 2011;108(40):16565–70
doi: 10.1073/pnas.1109861108
274   Gu Y, Zhu J, Xue C, Li Z, Ding F, Yang Y, et alChitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials 2014;35(7):2253–63
doi: 10.1016/j.biomaterials.2013.11.087
275   Liu X, Zhang F, Wang Q, Gao J, Meng J, Wang S, et alPlatelet-inspired multiscaled cytophilic interfaces with high specificity and efficiency toward point-of-care cancer diagnosis. Small 2014;10(22):4677–83
doi: 10.1002/smll.201401530
276   Zhao L, Mei S, Chu P, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials 2010;31(19):5072–82
doi: 10.1016/j.biomaterials.2010.03.014
277   Kubo K, Tsukimura N, Iwasa F, Ueno T, Saruwatari L, Aita H,et alCellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 2009;30(29):5319–29
doi: 10.1016/j.biomaterials.2009.06.021
278   Gittens R, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, et alThe effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 2011;32(13):3395–403
doi: 10.1016/j.biomaterials.2011.01.029
279   Tsukimura N, Yamada M, Iwasa F, Minamikawa H, Att W, Ueno T, et alSynergistic effects of UV photofunctionalization and micro-nano hybrid topography on the biological properties of titanium. Biomaterials 2011;32(19):4358–68
doi: 10.1016/j.biomaterials.2011.03.001
280   Tocce EJ, Smirnov VK, Kibalov DS, Liliensiek SJ, Murphy CJ, Nealey PF. The ability of corneal epithelial cells to recognize high aspect ratio nanostructures. Biomaterials 2010;31(14):4064–72
doi: 10.1016/j.biomaterials.2010.01.101
281   Jia Z, Xiu P, Li M, Xu X, Shi Y, Cheng Y, et alBioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 2016;75:203–22
doi: 10.1016/j.biomaterials.2015.10.035
282   Moffa M, Sciancalepore AG, Passione LG, Pisignano D. Combined nano- and micro-scale topographic cues for engineered vascular constructs by electrospinning and imprinted micro-patterns. Small 2014;10(12):2439–50
doi: 10.1002/smll.201303179
283   López-Bosque MJ, Tejeda-Montes E, Cazorla M, Linacero J, Atienza Y, Smith KH, et alFabrication of hierarchical micro-nanotopographies for cell attachment studies. Nanotechnology 2013;24(25):255305
doi: 10.1088/0957-4484/24/25/255305
284   Kim J, Bae WG, Choung HW, Lim KT, Seonwoo H, Jeong HE, et alMultiscale patterned transplantable stem cell patches for bone tissue regeneration. Biomaterials 2014;35(33):9058–67
doi: 10.1016/j.biomaterials.2014.07.036
285   Yang K, Jung H, Lee HR, Lee JS, Kim SR, Song KY, et alMultiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS Nano 2014;8(8):7809–22
doi: 10.1021/nn501182f
286   Bao L, Cheng X, Huang X, Guo L, Pang S, Yee A. Nanoimprinting over topography and multilayer three-dimensional printing. J Vac Sci Technol B 2002;20(6):2881–6
doi: 10.1116/1.1526355
287   Eliason MT, Charest JL, Simmons BA, García AJ, King WP. Nanoimprint fabrication of polymer cell substrates with combined microscale and nanoscale topography. J Vac Sci Technol B 2007;25(4):L31–4
doi: 10.1116/1.2748792
288   Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001;294(5547):1708–12
doi: 10.1126/science.1064829
289   Bryant SJ, Chowdhury TT, Lee DA, Bader DL, Anseth KS. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann Biomed Eng 2004;32(3):407–17
doi: 10.1023/
290   Park Y, Lutolf MP, Hubbell JA, Hunziker EB, Wong M. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng 2004;10(3–4):515–22
doi: 10.1089/107632704323061870
291   Fouchard J, Bimbard C, Bufi N, Durand-Smet P, Proag A, Richert A, et alThree-dimensional cell body shape dictates the onset of traction force generation and growth of focal adhesions. Proc Natl Acad Sci USA 2014;111(36):13075–80
doi: 10.1073/pnas.1411785111
292   Hogrebe NJ, Gooch KJ. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel. J Biomed Mater Res A 2016;104(9):2356–68
doi: 10.1002/jbm.a.35755
293   Fischbach C, Chen R, Matsumoto T, Schmelzle T, Brugge JS, Polverini PJ, et alEngineering tumors with 3D scaffolds. Nat Methods 2007;4(10):855–60
doi: 10.1038/nmeth1085
294   Aljitawi OS, Li D, Xiao Y, Zhang D, Ramachandran K, Stehno-Bittel L, et alA novel three-dimensional stromal-based model for in vitrochemotherapy sensitivity testing of leukemia cells. Leuk Lymphoma 2014;55(2):378–91
doi: 10.3109/10428194.2013.793323
295   Talukdar S, Kundu SC. A non-mulberry silk fibroin protein based 3D in vitro tumor model for evaluation of anticancer drug activity. Adv Funct Mater 2012;22(22):4778–88
doi: 10.1002/adfm.201200375
296   Bruce A, Evans R, Mezan R, Shi L, Moses BS, Martin KH, et alThree-dimensional microfluidic tri-culture model of the bone marrow microenvironment for study of acute lymphoblastic leukemia. PLoS One 2015;10(10):e0140506. Erratum in: PLoS One 2015;10(12):e0146203
doi: 10.1371/journal.pone.0140506
297   Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005;23(1):47–55
doi: 10.1038/nbt1055
298   Sun Y, Jallerat Q, Szymanski JM, Feinberg AW. Conformal nanopatterning of extracellular matrix proteins onto topographically complex surfaces. Nat Methods 2015;12(2):134–6
doi: 10.1038/nmeth.3210
299   Perschmann N, Hellmann JK, Frischknecht F, Spatz JP. Induction of malaria parasite migration by synthetically tunable microenvironments. Nano Lett 2011;11(10):4468–74
doi: 10.1021/nl202788r
300   Aydin D, Louban I, Perschmann N, Blümmel J, Lohmüller T, Cavalcanti-Adam EA, et al Polymeric substrates with tunable elasticity and nanoscopically controlled biomolecule presentation . Langmuir 2010;26(19):15472–80
doi: 10.1021/la103065x
301   Li S, Wang X, Cao B, Ye K, Li Z, Ding J. Effects of nanoscale spatial arrangement of arginine-glycine-aspartate peptides on dedifferentiation of chondrocytes. Nano Lett 2015;15(11):7755–65
doi: 10.1021/acs.nanolett.5b04043
302   Kruss S, Erpenbeck L, Schön MP, Spatz JP. Circular, nanostructured and biofunctionalized hydrogel microchannels for dynamic cell adhesion studies. Lab Chip 2012;12(18):3285–9
doi: 10.1039/c2lc40611j
303   Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH, et alExtracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 2014;13(10):970–8
doi: 10.1038/nmat4009
304   Madl CM, Katz LM, Heilshorn SC. Bio-orthogonally crosslinked, engineered protein hydrogels with tunable mechanics and biochemistry for cell encapsulation. Adv Funct Mater 2016;26(21):3612–20
doi: 10.1002/adfm.201505329
305   White ES. Lung extracellular matrix and fibroblast function. Ann Am Thorac Soc 2015;12(Suppl 1):S30–3
doi: 10.1513/AnnalsATS.201406-240MG
306   Kisseleva T, Brenner DA. Mechanisms of fibrogenesis. Exp Biol Med 2008;233(2):109–22
doi: 10.3181/0707-MR-190
307   Burdick JA, Murphy WL. Moving from static to dynamic complexity in hydrogel design. Nat Commun 2012;3:1269
doi: 10.1038/ncomms2271
308   Tibbitt MW, Anseth KS. Dynamic microenvironments: the fourth dimension. Sci Transl Med 2012;4(160):160ps24
doi: 10.1126/scitranslmed.3004804
309   Guvendiren M, Burdick JA. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 2012;3:792
doi: 10.1038/ncomms1792
310   Young JL, Engler AJ. Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. Biomaterials 2011;32(4):1002–9
doi: 10.1016/j.biomaterials.2010.10.020
311   Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 2013;12(5):458–65
doi: 10.1038/nmat3586
312   Le DM, Kulangara K, Adler AF, Leong KW, Ashby VS. Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(ε-caprolactone) surfaces. Adv Mater 2011;23(29):3278–83
doi: 10.1002/adma.201100821
313   Kloxin AM, Kasko AM, Salinas CN, Anseth KS. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009;324(5923):59–63
doi: 10.1126/science.1169494
[1] Supplementary Information Download
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2