Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (2) : 161 -165
Research |
A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers
Ian David Lockhart Bogle()
Center for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK

The challenges posed by smart manufacturing for the process industries and for process systems engineering (PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, but benchmarking would give greater confidence. Technical challenges confronting process systems engineers in developing enabling tools and techniques are discussed regarding flexibility and uncertainty, responsiveness and agility, robustness and security, the prediction of mixture properties and function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to drive agility will require tackling new challenges, such as how to ensure the consistency and confidentiality of data through long and complex supply chains. Modeling challenges also exist, and involve ensuring that all key aspects are properly modeled, particularly where health, safety, and environmental concerns require accurate predictions of small but critical amounts at specific locations. Environmental concerns will require us to keep a closer track on all molecular species so that they are optimally used to create sustainable solutions. Disruptive business models may result, particularly from new personalized products, but that is difficult to predict.

Keywords Smart manufacturing      Process systems engineering      Uncertainty      Flexibility      Optimization      Model-based control     
Corresponding Authors: Ian David Lockhart Bogle   
Just Accepted Date: 16 March 2017   Online First Date: 07 April 2017    Issue Date: 27 April 2017
E-mail this article
E-mail Alert
Articles by authors
Ian David Lockhart Bogle
Cite this article:   
Ian David Lockhart Bogle. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers[J]. Engineering, 2017, 3(2): 161 -165 .
URL:     OR
1   Davis J, Edgar T, Porter J, Bernaden J, Sarli M. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng 2012;47:145–56
doi: 10.1016/j.compchemeng.2012.06.037
2   Kumar A, Baldea M, Edgar TF, Ezekoye OA. Smart manufacturing approach for efficient operation of industrial steam-methane reformers. Ind Eng Chem Res 2015;54(16):4360–70
doi: 10.1021/ie504087z
3   Li D. Perspective for smart factory in petrochemical industry. Comput Chem Eng 2016;91:136–48
doi: 10.1016/j.compchemeng.2016.03.006
4   Grossmann IE, Doherty MF, Harold MP. A tribute to Roger Sargent. AIChE J 2016;62(9):2950
doi: 10.1002/aic.15423
5   Smith R. Chemical process: Design and integration. Chichester: John Wiley & Sons, Ltd.; 2005.
6   Douglas JM. Conceptual design of chemical processes. New York: McGraw-Hill Book Company; 1988.
7   Biegler LT, Grossmann IE, Westerberg AW. Systematic methods of chemical process design. Englewood Cliffs: Prentice-Hall; 1997.
8   Jaksland CA, Gani R, Lien KM. Separation process design and synthesis based on thermodynamic insights. Chem Eng Sci 1995;50(3):511–30
doi: 10.1016/0009-2509(94)00216-E
9   Dijkema GPJ, Basson L. Complexity and industrial ecology: Foundations for a transformation from analysis to action. J Ind Ecol 2009;13(2):157–64
doi: 10.1111/j.1530-9290.2009.00124.x
10   Hebert D. Real-time optimization with MPC. Control [Internet]. 2013 Sep 12 [cited 2016 Oct 20]. Available from:
11   He X, Hayya JC. The Impact of just-in-time production on food quality. Total Qual Manage 2002;13(5):651–70
doi: 10.1080/0954412022000002054
12   Cao C, Gu X, Xin Z. A data-driven rolling-horizon online scheduling model for diesel production of a real-world refinery. AIChE J 2013;59(4):1160–74
doi: 10.1002/aic.13895
13   Grossmann IE, Sargent RWH. Optimum design of chemical plants with uncertain parameters. AIChE J 1978;24(6):1021–8
doi: 10.1002/aic.690240612
14   Halemane KP, Grossmann IE. Optimal process design under uncertainty. AIChE J. 1983;29(3):425–33
doi: 10.1002/aic.690290312
15   Steimel J, Harrmann M, Schembecker G, Engell S. A framework for the modeling and optimization of process superstructures under uncertainty. Chem Eng Sci 2014;115:225–37
doi: 10.1016/j.ces.2013.04.052
16   Steimel J, Engell S. Optimization-based support for process design under uncertainty: A case study. AIChE J 2016;62(9):3404–19
doi: 10.1002/aic.15400
17   Mohideen MJ, Perkins JD, Pistikopoulos EN. Optimal design of dynamic systems under uncertainty. AIChE J 1996;42(8):2251–72
doi: 10.1002/aic.690420814
18   Washington ID, Swartz CLE. Design under uncertainty using parallel multiperiod dynamic optimization. AIChE J 2014;60(9):3151–68
doi: 10.1002/aic.14473
19   Wang S, Baldea M. Identification-based optimization of dynamical systems under uncertainty. Comput Chem Eng 2014;64:138–52
doi: 10.1016/j.compchemeng.2014.02.001
20   Sahinidis NV. Optimization under uncertainty: State-of-the-art and opportunities. Comput Chem Eng 2004;28(6–7):971–83
doi: 10.1016/j.compchemeng.2003.09.017
21   Yuan Z, Chen B, Zhao J. An overview on controllability analysis of chemical processes. AIChE J 2011;57(5):1185–201
doi: 10.1002/aic.12340
22   Sharifzadeh M. Integration of process design and control: A review. Chem Eng Res Des 2013;91(12):2515–49
doi: 10.1016/j.cherd.2013.05.007
23   Ellis M, Durand H, Christofides PD. A tutorial review of economic model predictive control methods. J Process Contr 2014;24(8):1156–78
doi: 10.1016/j.jprocont.2014.03.010
24   Youssef MA, Youssef EM. The synergistic impact of time-based technologies on manufacturing competitive priorities. Int J Technol Manage 2015;67(2–4):245–68
doi: 10.1504/IJTM.2015.068213
25   Sousa RT, Shah N, Papageorgiou LG. Supply chains of high-value low-volume products. In: Pistikopoulos EN, Georgiadis MC, Dua V, Papageorgiou LG, editors Process systems engineering: Supply chain optimization, volume 4. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 1–27.
26   Li J, Xiao X, Boukouvala F, Floudas CA, Zhao B, Du G, et al.Data-driven mathematical modeling and global optimization framework for entire petrochemical planning operation. AIChE J 2016;62(9):3020–40
doi: 10.1002/aic.15220
27   Sahay N, Ierapetritou M. Multienterprise supply chain: Simulation and optimization. AIChE J 2016;62(9):3392–403
doi: 10.1002/aic.15399
28   Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN. A review of process fault detection and diagnosis: Part I: Quantitative model-based methods. Comput Chem Eng 2003;27(3):293–311
doi: 10.1016/S0098-1354(02)00160-6
29   Zhang L, Babi DK, Gani R. New vistas in chemical product and process design. Annu Rev Chem Biomol 2016;7:557–82
doi: 10.1146/annurev-chembioeng-080615-034439 pmid: 27088667
30   Jonuzaj S, Akula PT, Kleniati PM, Adjiman CS. The formulation of optimal mixtures with generalized disjunctive programming: A solvent design case study. AIChE J 2016;62(5):1616–33
doi: 10.1002/aic.15122
31   Bogle IDL. Recent developments in process systems engineering as applied to medicine. Curr Opin Chem Eng 2012;1(4):453–8
doi: 10.1016/j.coche.2012.09.007
32   Ashworth W, Perez-Galvan C, Davies N, Bogle IDL. Liver function as an engineering system. AIChE J 2016;62(9):3285–97
doi: 10.1002/aic.15292
33   Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program 1986;36(3):307–39
doi: 10.1007/BF02592064
34   Ruiz JP, Grossmann IE. Global optimization of non-convex generalized disjunctive programs: A review on reformulations and relaxation techniques. J Global Optim 2017;67(1–2):43–58
doi: 10.1007/s10898-016-0401-0
35   Floudas CA, Pardalos PM. State of the art in global optimization: Computational methods and applications. Dordrecht: Kluwer Academic Publishers; 2012.
36   Brandt SC, Morbach J, Miatidis M, Theißen M, Jarke M, Marquardt W. An ontology-based approach to knowledge management in design processes. Comput Chem Eng 2008;32(1–2):320–42
doi: 10.1016/j.compchemeng.2007.04.013
37   Zhao Y, Jiang C, Yang A. Towards computer-aided multiscale modelling: An overarching methodology and support of conceptual modelling. Comput Chem Eng 2012;36:10–21
doi: 10.1016/j.compchemeng.2011.06.010
38   Lopez Flores R, Belaud JP, Negny S, Le Lann JM. Open computer aided innovation to promote innovation in process engineering. Chem Eng Res Des 2015;103:90–107
doi: 10.1016/j.cherd.2015.08.015
[1] Yuan Yuan,Jiong Tang. On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines[J]. Engineering, 2017, 3(4): 494 -503 .
[2] Jinliang Ding, Cuie Yang, Tianyou Chai. Recent Progress on Data-Based Optimization for Mineral Processing Plants[J]. Engineering, 2017, 3(2): 183 -187 .
[3] Zhihong Yuan, Weizhong Qin, Jinsong Zhao. Smart Manufacturing for the Oil Refining and Petrochemical Industry[J]. Engineering, 2017, 3(2): 179 -182 .
[4] Vassilis M. Charitopoulos, Lazaros G. Papageorgiou, Vivek Dua. Nonlinear Model-Based Process Operation under Uncertainty Using Exact Parametric Programming[J]. Engineering, 2017, 3(2): 202 -213 .
[5] Pedro A. Castillo Castillo, Pedro M. Castro, Vladimir Mahalec. Global Optimization of Nonlinear Blend-Scheduling Problems[J]. Engineering, 2017, 3(2): 188 -201 .
[6] Renkun Wang. Key Technologies in the Design and Construction of 300 m Ultra-High Arch Dams[J]. Engineering, 2016, 2(3): 350 -359 .
[7] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250 -257 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2