Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (2) : 188 -201     https://doi.org/10.1016/J.ENG.2017.02.005
Research |
Global Optimization of Nonlinear Blend-Scheduling Problems
Pedro A. Castillo Castillo1,Pedro M. Castro2,Vladimir Mahalec1()
1. Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
2. Center for Mathematics, Fundamental Applications and Operations Research, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal
Abstract
Abstract  

The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR) and normalized multiparametric disaggregation technique (NMDT) to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.

Keywords Global optimization      Nonlinear gasoline blending      Continuous-time scheduling model      Piecewise linear relaxations     
Fund: 
Corresponding Authors: Vladimir Mahalec   
Just Accepted Date: 28 March 2017   Online First Date: 21 April 2017    Issue Date: 27 April 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pedro A. Castillo Castillo
Pedro M. Castro
Vladimir Mahalec
Cite this article:   
Pedro A. Castillo Castillo,Pedro M. Castro,Vladimir Mahalec. Global Optimization of Nonlinear Blend-Scheduling Problems[J]. Engineering, 2017, 3(2): 188 -201 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.02.005     OR     http://engineering.org.cn/EN/Y2017/V3/I2/188
References
1   Harjunkoski I, Maravelias CT, Bongers P, Castro PM, Engell S, Grossmann IE, et al.Scope for industrial applications of production scheduling models and solution methods. Comput Chem Eng 2014;62:161–93
doi: 10.1016/j.compchemeng.2013.12.001
2   Méndez CA, Grossmann IE, Harjunkoski I, Kaboré P. A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations. Comput Chem Eng 2006;30(4):614–34
doi: 10.1016/j.compchemeng.2005.11.004
3   Li J, Karimi I. Scheduling gasoline blending operations from recipe determination to shipping using unit slots. Ind Eng Chem Res 2011;50(15):9156–74
doi: 10.1021/ie102321b
4   Li J, Xiao X, Floudas CA. Integrated gasoline blending and order delivery operations: Part I. Short-term scheduling and global optimization for single and multi-period operations. AIChE J 2016;62(6):2043–70
doi: 10.1002/aic.15168
5   Singh A, Forbes JF, Vermeer PJ, Woo SS. Model-based real-time optimization of automotive gasoline blending operations. J Process Contr 2000;10(1):43–58
doi: 10.1016/S0959-1524(99)00037-2
6   Joly M, Pinto JM. Mixed-integer programming techniques for the scheduling of fuel oil and asphalt production. Chem Eng Res Des 2003;81(4):427–47
doi: 10.1205/026387603765173691
7   Floudas CA, Lin X. Continuous-time versus discrete-time approaches for scheduling of chemical processes: A review. Comput Chem Eng 2004;28(11):2109–29
doi: 10.1016/j.compchemeng.2004.05.002
8   Sundaramoorthy A, Maravelias CT. Computational study of network-based mixed-integer programming approaches for chemical production scheduling. Ind Eng Chem Res 2011;50(9):5023–40
doi: 10.1021/ie101419z
9   Maravelias CT. General framework and modeling approach classification for chemical production scheduling. AIChE J 2012;58(6):1812–28
doi: 10.1002/aic.13801
10   Jia Z, Ierapetritou M. Mixed-integer linear programming model for gasoline blending and distribution scheduling. Ind Eng Chem Res 2003;42(4):825–35
doi: 10.1021/ie0204843
11   Jia Z, Ierapetritou M. Efficient short-term scheduling of refinery operations based on a continuous time formulation. Comput Chem Eng 2004;28(6–7):1001–19
doi: 10.1016/j.compchemeng.2003.09.007
12   Glismann K, Gruhn G. Short-term scheduling and recipe optimization of blending processes. Comput Chem Eng 2001;25(4–6):627–34
doi: 10.1016/S0098-1354(01)00643-3
13   Li J, Karimi I, Srinivasan R. Recipe determination and scheduling of gasoline blending operations. AIChE J 2010;56(2):441–65.
14   Castillo PAC, Mahalec V. Inventory pinch based, multiscale models for integrated planning and scheduling—Part II: Gasoline blend scheduling. AIChE J 2014;60(7):2475–97
doi: 10.1002/aic.14444
15   Castillo PAC, Mahalec V. Inventory pinch gasoline blend scheduling algorithm combining discrete- and continuous-time models. Comput Chem Eng 2016;84:611–26
doi: 10.1016/j.compchemeng.2015.08.005
16   Castillo PAC, Mahalec V. Improved continuous-time model for gasoline blend scheduling. Comput Chem Eng 2016;84:627–46
doi: 10.1016/j.compchemeng.2015.08.003
17   Lotero I, Trespalacios F, Grossmann IE, Papageorgiou DJ, Cheon MS. An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem. Comput Chem Eng 2016;87:13–35
doi: 10.1016/j.compchemeng.2015.12.017
18   Castro PM. New MINLP formulation for the multiperiod pooling problem. AIChE J 2015;61(11):3728–38
doi: 10.1002/aic.15018
19   Kolodziej SP, Grossmann IE, Furman KC, Sawaya NW. A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput Chem Eng 2013;53:122–42
doi: 10.1016/j.compchemeng.2013.01.016
20   Cerdá J, Pautasso PC, Cafaro DC. A cost-effective model for the gasoline blend optimization problem. AIChE J 2016;62(9):3002–19
doi: 10.1002/aic.15208
21   Cerdá J, Pautasso PC, Cafaro DC. Optimizing gasoline recipes and blending operations using nonlinear blend models. Ind Eng Chem Res 2016;55(28):7782–800
doi: 10.1021/acs.iecr.6b01566
22   Tawarmalani M, Sahinidis NV. A polyhedral branch-and-cut approach to global optimization. Math Program 2005;103(2):225–49
doi: 10.1007/s10107-005-0581-8
23   Misener R, Floudas CA. ANTIGONE: Algorithms for continuous/integer global optimization of nonlinear equations. J Glob Optim 2014;59(2):503–26
doi: 10.1007/s10898-014-0166-2
24   Boland N, Kalinowski T, Rigtering F. New multi-commodity flow formulations for the pooling problem. J Glob Optim 2016;66(4):669–710
doi: 10.1007/s10898-016-0404-x
25   Sherali HD, Alameddine A. A new reformulation-linearization technique for bilinear programming problems. J Glob Optim 1992;2(4):379–410
doi: 10.1007/BF00122429
26   Ryoo HS, Sahinidis NV. A branch-and-reduce approach for global optimization. J Glob Optim 1996;8(2):107–38
doi: 10.1007/BF00138689
27   Smith EMB, Pantelides CC. Global optimization of nonconvex MINLPs. Comput Chem Eng 1997;21(Suppl):S791–6
doi: 10.1016/S0098-1354(97)87599-0
28   Belotti P, Lee J, Liberti L, Margot F, Wächter A. Branching and bounds tightening techniques for non-convex MINLP. Optim Methods Softw 2009;24(4–5):597–634
doi: 10.1080/10556780903087124
29   Achterberg T. SCIP: Solving constraint integer programs. Math Program Comput 2009;1(1):1–41
doi: 10.1007/s12532-008-0001-1
30   Castro PM. Spatial branch-and-bound algorithm for MIQCPs featuring multiparametric disaggregation. Optim Methods Softw. Epub 2016 Dec 13
doi: 10.1080/10556788.2016.1264397
31   Castillo PC, Castro PM, Mahalec V. Global optimization algorithm for large-scale refinery planning models with bilinear terms. Ind Eng Chem Res 2017;56(2):530–48
doi: 10.1021/acs.iecr.6b01350
32   McCormick GP. Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Math Program 1976;10(1):147–75
doi: 10.1007/BF01580665
33   Karuppiah R, Grossmann IE. Global optimization for the synthesis of integrated water systems in chemical processes. Comput Chem Eng 2006;30(4):650–73
doi: 10.1016/j.compchemeng.2005.11.005
34   Castro PM. Tightening piecewise McCormick relaxations for bilinear problems. Comput Chem Eng 2015;72:300–11
doi: 10.1016/j.compchemeng.2014.03.025
35   Misener R, Thompson JP, Floudas CA. APOGEE: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput Chem Eng 2011;35(5):876–92
doi: 10.1016/j.compchemeng.2011.01.026
36   Kolodziej S, Castro PM, Grossmann IE. Global optimization of bilinear programs with a multiparametric disaggregation technique. J Glob Optim 2013;57(4):1039–63
doi: 10.1007/s10898-012-0022-1
37   Castro PM. Normalized multiparametric disaggregation: An efficient relaxation for mixed-integer bilinear problems. J Glob Optim 2016;64(4):765–84
doi: 10.1007/s10898-015-0342-z
38   Castro PM, Grossmann IE. Global optimal scheduling of crude oil blending operations with RTN continuous-time and multiparametric disaggregation. Ind Eng Chem Res 2014;53(39):15127–45
doi: 10.1021/ie503002k
39   Castro PM. Source-based discrete and continuous-time formulations for the crude oil pooling problem. Comput Chem Eng 2016;93:382–401
doi: 10.1016/j.compchemeng.2016.06.016
40   Castillo PAC, Mahalec V, Kelly JD. Inventory pinch algorithm for gasoline blend planning. AIChE J 2013;59(10):3748–66
doi: 10.1002/aic.14113
41   Healy WC, Maassen CW, Peterson RT. A new approach to blending octanes. In: Proceedings of the 24th Midyear Meeting of American Petroleum Institute’s Division of Refining; 1959 May 27; New York, US; 1959. p. 132–136.
42   Castro PM, Grossmann IE. Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems. J Glob Optim 2014;59(2):277–306
doi: 10.1007/s10898-014-0162-6
43   Kallrath J. Planning and scheduling in the process industry. OR Spectrum 2002;24(1):219–250
doi: 10.1007/s00291-002-0101-7
Related
[1] Jinliang Ding, Cuie Yang, Tianyou Chai. Recent Progress on Data-Based Optimization for Mineral Processing Plants[J]. Engineering, 2017, 3(2): 183 -187 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering