Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (2) : 202 -213
Research |
Nonlinear Model-Based Process Operation under Uncertainty Using Exact Parametric Programming
Vassilis M. Charitopoulos,Lazaros G. Papageorgiou,Vivek Dua()
Center for Process Systems Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK

In the present work, two new, (multi-)parametric programming (mp-P)-inspired algorithms for the solution of mixed-integer nonlinear programming (MINLP) problems are developed, with their main focus being on process synthesis problems. The algorithms are developed for the special case in which the nonlinearities arise because of logarithmic terms, with the first one being developed for the deterministic case, and the second for the parametric case (p-MINLP). The key idea is to formulate and solve the square system of the first-order Karush-Kuhn-Tucker (KKT) conditions in an analytical way, by treating the binary variables and/or uncertain parameters as symbolic parameters. To this effect, symbolic manipulation and solution techniques are employed. In order to demonstrate the applicability and validity of the proposed algorithms, two process synthesis case studies are examined. The corresponding solutions are then validated using state-of-the-art numerical MINLP solvers. For p-MINLP, the solution is given by an optimal solution as an explicit function of the uncertain parameters.

Keywords Parametric programming      Uncertainty      Process synthesis      Mixed-integer nonlinear programming      Symbolic manipulation     
Corresponding Authors: Vivek Dua   
Just Accepted Date: 24 March 2017   Online First Date: 26 April 2017    Issue Date: 27 April 2017
E-mail this article
E-mail Alert
Articles by authors
Vassilis M. Charitopoulos
Lazaros G. Papageorgiou
Vivek Dua
Cite this article:   
Vassilis M. Charitopoulos,Lazaros G. Papageorgiou,Vivek Dua. Nonlinear Model-Based Process Operation under Uncertainty Using Exact Parametric Programming[J]. Engineering, 2017, 3(2): 202 -213 .
URL:     OR
1   Floudas CA. Nonlinear and mixed-integer optimization: Fundamentals and applications. Oxford: Oxford University Press; 1995.
2   Bedenik NI, Ropotar M, Kravanja Z. MINLP synthesis of reactor networks in overall process schemes based on a concept of time-dependent economic regions. Comput Chem Eng 2007;31(5–6):657–76
doi: 10.1016/j.compchemeng.2006.10.007
3   Nicol W, Hernier M, Hildebrant D, Glasser D. The attainable region and process synthesis: Reaction systems with external cooling and heating: The effect of relative cost of reactor volume to heat exchange area on the optimal process layout. Chem Eng Sci 2001;56(1):173–91
doi: 10.1016/S0009-2509(00)00196-2
4   Kokossis AC, Floudas CA. Optimization of complex reactor networks—II. Nonisothermal operation. Chem Eng Sci 1994;49(7):1037–51
doi: 10.1016/0009-2509(94)80010-3
5   Huang K, Karimi IA. Efficient algorithm for simultaneous synthesis of heat exchanger networks. Chem Eng Sci 2014;105:53–68
doi: 10.1016/j.ces.2013.10.040
6   Grossmann IE, Guillén-Gosálbez G. Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes. Comput Chem Eng 2010;34(9):1365–76
doi: 10.1016/j.compchemeng.2009.11.012
7   Westerberg AW. A retrospective on design and process synthesis. Comput Chem Eng 2004;28(4):447–58
doi: 10.1016/j.compchemeng.2003.09.029
8   Adjiman CS, Schweiger CA, Floudas CA. Mixed-integer nonlinear optimization in process synthesis. In: Du DZ, Pardalos PM, editors Handbook of combinatorial optimization. Dordrecht: Kluwer Academic Publishers; 1998. p. 1–76
doi: 10.1007/978-1-4613-0303-9_1
9   Geoffrion AM. Generalized benders decomposition. J Optimiz Theory App 1972;10(4):237–60
doi: 10.1007/BF00934810
10   Viswanathan J, Grossmann IE. A combined penalty function and outer-approximation method for MINLP optimization. Comput Chem Eng 1990;14(7):769–82
doi: 10.1016/0098-1354(90)87085-4
11   Westerlund T, Pettersson F. An extended cutting plane method for solving convex MINLP problems. Comput Chem Eng 1995;19(Suppl 1):131–6
doi: 10.1016/0098-1354(95)87027-X
12   Sahinidis NV. BARON: A general purpose global optimization software package. J Global Optim 1996;8(2):201–5
doi: 10.1007/BF00138693
13   Misener R, Floudas CA. ANTIGONE: Algorithms for continuous/integer global optimization of nonlinear equations. J Global Optim 2014;59(2–3):503–26
doi: 10.1007/s10898-014-0166-2
14   Grossmann IE, Apap RM, Calfa BA, Garcia-Herreros P, Zhang Q. Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty. Comput Chem Eng 2016;91:3–14
doi: 10.1016/j.compchemeng.2016.03.002
15   Dua V, Pistikopoulos EN. Parametric mixed integer nonlinear optimization. In: Floudas CA, Pardalos PM, editors Encyclopedia of optimization. 2nd ed. New York: Springer Science+ Buisiness Media, LLC.; 2008. p. 2920–4.
16   Pistikopoulos EN, Dua V, Bozinis NA, Bemporad A, Morari M. On-line optimization via off-line parametric optimization tools. Comput Chem Eng 2002;26(2):175–85
doi: 10.1016/S0098-1354(01)00739-6
17   Pertsinidis A. On the parametric optimization of mathematical programs with binary variables and its application in the chemical engineering process synthesis [dissertation]. Pittsburgh: Carnegie Mellon University; 1992.
18   McBride RD, Yormark JS. Finding all solutions for a class of parametric quadratic integer programming problems. Manage Sci 1980;26(8):784–95
doi: 10.1287/mnsc.26.8.784
19   Cooper MW. Postoptimality analysis in nonlinear integer programming: The right-hand side case. Nav Res Log 1981;28(2):301–7
doi: 10.1002/nav.3800280212
20   Skorin-Kapov J, Granot F. Non-linear integer programming: Sensitivity analysis for branch and bound. Oper Res Lett 1987;6(6):269–74
doi: 10.1016/0167-6377(87)90041-1
21   Acevedo J, Pistikopoulos EN. A parametric MINLP algorithm for process synthesis problems under uncertainty. Ind Eng Chem Res 1996;35(1):147–58
doi: 10.1021/ie950135r
22   Dua V, Pistikopoulos EN. Algorithms for the solution of multiparametric mixed-integer nonlinear optimization problems. Ind Eng Chem Res 1999;38(10):3976–87
doi: 10.1021/ie980792u
23   Dua V, Papalexandri KP, Pistikopoulos EN. Global optimization issues in multiparametric continuous and mixed-integer optimization problems. J Global Optim 2004;30(1):59–89
doi: 10.1023/B:JOGO.0000049091.73047.7e
24   Fotiou IA, Rostalski P, Parrilo PA, Morari M. Parametric optimization and optimal control using algebraic geometry methods. Int J Control 2006;79(11):1340–58
doi: 10.1080/00207170600726592
25   Charitopoulos VM, Dua V. Explicit model predictive control of hybrid systems and multiparametric mixed integer polynomial programming. AIChE J 2016;62(9):3441–60
doi: 10.1002/aic.15396
26   Dua V. Mixed integer polynomial programming. Comput Chem Eng 2015;72:387–94
doi: 10.1016/j.compchemeng.2014.07.020
27   Wolfram S. The Mathematica ® book. 4th ed. Cambridge: Cambridge University Press; 1999.
28   Vyas, J, Dua, V. Process Synthesis and Design under Uncertainty: A Specific Class of MINLP Problems. 17th British-French-German Conference on Optimization 2015, London, UK
29   Duran MA, Grossmann IE. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math Program 1986;36(3):307–39
doi: 10.1007/BF02592064
30   Kokossis AC, Yang A. On the use of systems technologies and a systematic approach for the synthesis and the design of future biorefineries. Comput Chem Eng 2010;34(9):1397–405
doi: 10.1016/j.compchemeng.2010.02.021
31   Stefanakis ME, Pyrgakis KA, Mountraki AD, Kokossis AC. The total site approach as a synthesis tool for the selection of valorization paths in lignocellulosic biorefineries. Comput Aided Chem Eng 2014; 33:1567–72
doi: 10.1016/B978-0-444-63455-9.50096-9
[1] Ian David Lockhart Bogle. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers[J]. Engineering, 2017, 3(2): 161 -165 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.