Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (3) : 299 -307     https://doi.org/10.1016/J.ENG.2017.03.002
Research |
A Technological Overview of Biogas Production from Biowaste
Spyridon Achinas1(),Vasileios Achinas2,Gerrit Jan Willem Euverink1
1. Faculty of Science and Engineering, University of Groningen, Groningen 9747 AG, the Netherlands
2. Union of Agricultural Cooperatives of Monofatsi, Heraklion 700 16, Greece
Abstract
Abstract  

The current irrational use of fossil fuels and the impact of greenhouse gases on the environment are driving research into renewable energy production from organic resources and waste. The global energy demand is high, and most of this energy is produced from fossil resources. Recent studies report that anaerobic digestion (AD) is an efficient alternative technology that combines biofuel production with sustainable waste management, and various technological trends exist in the biogas industry that enhance the production and quality of biogas. Further investments in AD are expected to meet with increasing success due to the low cost of available feedstocks and the wide range of uses for biogas (i.e., for heating, electricity, and fuel). Biogas production is growing in the European energy market and offers an economical alternative for bioenergy production. The objective of this work is to provide an overview of biogas production from lignocellulosic waste, thus providing information toward crucial issues in the biogas economy.

Keywords Anaerobic digestion      Biogas      Sustainable energy      Lignocellulosic waste      Microbial ecology     
Fund: 
Corresponding Authors: Spyridon Achinas   
Just Accepted Date: 22 May 2017   Online First Date: 23 June 2017    Issue Date: 30 June 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Spyridon Achinas
Vasileios Achinas
Gerrit Jan Willem Euverink
Cite this article:   
Spyridon Achinas,Vasileios Achinas,Gerrit Jan Willem Euverink. A Technological Overview of Biogas Production from Biowaste[J]. Engineering, 2017, 3(3): 299 -307 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.002     OR     http://engineering.org.cn/EN/Y2017/V3/I3/299
References
1   International Energy Agency. World energy outlook special report 2015: Energy and climate change. Final report. Paris: OECD/IEA; 2015.
2   United Nations Environment Programme. The emissions gap report 2014: A UNEP synthesis report. Final report. Nairobi: UNEP; 2014.
3   van Foreest F. Perspectives for biogas in Europe. Oxford: Oxford Institute for Energy Studies; 2012.
4   []Nishio N, Nakashimada Y. Recent development of anaerobic digestion processes for energy recovery from wastes. J Biosci Bioeng 2007;103(2):105–12.
5   EurObserv’ER. The state of renewable energies in Europe. Report. Paris: EurObserv’ER; 2014.
6   Wagner L. Trends from the use of biogas technology in Germany. In: Proceedings of the VIV Asia Biogas Conference ; 2015 Mar 12; Bangkok, Thailand; 2015.
7   Edita Vagonyte. Biogas & biomethane in Europe. Work package 4: Biogas & Biomethane. Report. Brussels: European Biomass Association; 2015.
8   Soetaert W, Vandamme EJ. Biofuels in perspective. In: Soetaert W, Vandamme EJ, editors Biofuels.New Jersey: John Wiley & Sons, Ltd.; 2009. p. 1–8.
9   Lin Y, Tanaka S. Ethanol fermentation from biomass resources: Current state and prospects. Appl Microbiol Biotechnol 2006;69(6):627–42.
10   Weiland P, Verstraete W, van Haandel A. Biomass digestion to methane in agriculture: A successful pathway for the energy production and waste treatment worldwide. In: Soetaert W, Vandamme EJ, editors Biofuels.New Jersey: John Wiley & Sons, Ltd.; 2009. p. 171–96.
11   Deublein D, Steinhauser A. History and status to date in other countries. In: Deublein D, Steinhauser A, editors Biogas from waste and renewable resources : An introduction. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008. p. 35–43.
12   Abbasi T, Tauseef SM, Abbasi SA. Biogas and global warming. In: Abbasi T, Tauseef SM, Abbasi SA, editors Biogas energy. New York: Springer; 2012, p. 25–34.
13   European Biogas Association. Biogas: Simply the best. Report. Brussels: European Biogas Association. 2011.
14   [Flach B, Lieberz S, Rondon M, Williams B, Teike C. EU-28 biofuels annual 2015. Report. Washington, DC: USDA Foreign Agricultural Service ; 2015 Jul. Report No.: NL5028.
15   EurObserv’ER. Biogas barometer. Study report. Brussels: Intelligent Energy Europe; 2014.
16   European Biomass Association. A biogas road map for Europe. Report. Brussels: European Biomass Association; 2009.
17   BIOGAS3 Consortium. European legislative and financial framework for the implementation of small-scale biogas plants in agro-food & beverage companies. Brussels: Intelligent Energy Europe; 2014. Grant agreement: IEE/13/477/SI2.675801.
18   Stucki M, Jungbluth N, Leuenberger M. Life cycle assessment of biogas production from different substrates. Final report. Bern: Federal Department of Environment, Transport, Energy and Communications , Federal Office of Energy; 2011Dec.
19   Sustainable Energy Authority of Ireland. Gas yields table. Dublin: Sustainable Energy Authority of Ireland; 2002.
20   Fachagentur Nachwachsende Rohstoffe. Bioenergy in Germany: Facts and figures. Report. Bonn: Federal Ministry of Food, Agriculture and Consumer Protection; 2012Jan.
21   Braun R. Anaerobic digestion: A multi-faceted process for energy, environmental management and rural development. In: Ranalli P, editor Improvement of crop plants for industrial end uses. Dordrecht: Springer; 2007. p. 335–415.
22   Braun R. Biogas—Methane treatment of organic waste. Wien: Springer; 1982. Germany.
23   [Zubr J. Methanogenic fermentation of fresh and ensiled plant materials. Biomass 1986;11(3):159–71.
24   Fachagentur Nachwachsende Rohstoffe. Biogas: Base line data for Germany. Gülzow: Fachagentur Nachwachsende Rohstoffe; 2008. Germany.
25   ATV-DVWK. Thermische, chemische und biochemische Desintegrationsverfahren: 3. Arbeitsbericht der Arbeitsgruppe AK-1.6 “Klärschlammdesintegration”. Corresp Wastewater 2003;50:796–804. Germany.
26   Mshandete A, Björnsson L, Kivaisi AK, Rubindamayugi MST, Matthiasson B. Effect of particle size on biogas yield from sisal fibre waste. Renew Energy 2006;31(14):2385–92.
27   Philbrook A, Alissandratos A, Easton CJ. Biochemical processes for generating fuels and commodity chemicals from lignocellulosic biomass, environmental biotechnology. In: Marian P, editor New approaches and prospective applications. Rijeka: InTech; 2013. p. 39–64.
28   Iqbal HMN, Ahmed I, Zia MA, Irfan M. Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2011;2(3):149–56.
29   Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 2009;48(8):3713–29.
30   Calvo-Flores FG, Dobado JA. Lignin as renewable raw material. ChemSusChem 2010;3(11):1227–35.
31   Jiang G, Nowakowski DJ, Bridgwater AV. A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 2010;498(1–2):61–6.
32   Menon V, Rao M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Pror Energy Combust Sci 2012;38(4):522–50.
33   Bertero M, de la Puente G, Sedran U. Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 2012;95:263–71.
34   Iqbal HMN, Kyazze G, Keshavarz T. Advances in valorization of lignocellulosic materials by bio-technology: An overview. BioResources 2013;8(2):3157–76.
35   Prassad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycling 2007;50(1):1–39.
36   Ratnaweeraa DR, Saha D, Pingali SV, Labbé N, Naskar AK, Dadmun M. The impact of lignin source on its self-assembly in solution. RSC Adv 2015;5(82):67258–66.
37   Fengel D, Wegener G. Wood: Chemistry, ultrastructure, reactions. Berlin: De Gruyter; 1984.
38   Deguchi S, Mukai SA, Tsudome M, Horikoshi K. Facile generation of fullerene nanoparticles by hand-grinding. Adv Mater 2006;18(6):729–32.
39   Klemm D, Schmauder HP, Heinze T. Cellulose. Biopolymers Online 2005;6:277–312.
40   Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE. Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 2005;124(1):1081–99.
41   Saha BC. Hemicellulose bioconversion. J Ind Microbiol Biotechnol 2003;30(5):279–91.
42   Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasic R. Hemicelluloses for fuel ethanol: A review. Bioresour Technol 2010;101(13):4775–800.
43   Sun R, Sun XF, Tomkinson J. Hemicelluloses and their derivatives. In: Gatenholm P. Tenkanen M, editors Hemicelluloses: Science and technology . Washington, DC: American Chemical Society; 2004. p. 2–22.
44   Ebringerová A, Hromádková Z, Heinze T. Hemicellulose. In: Heinze T, editor Polysaccharides I. Structure, characterization and use. Berlin: Springer; 2005. p.1–67.
45   Gray MC, Converse AO, Wyman CE. Sugar monomer and oligomer solubility. Data and predictions for application to biomass hydrolysis. Appl Biochem Biotechnol 2003;105(1):179–93.
46   Bobleter O. Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 1994;19(5):797–841.
47   Garrote G, Dominguez H, Parajo JC. Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 1999;57(3):191–202.
48   Balaban M, Ucar G. The effect of the duration of alkali treatment on the solubility of polyoses. Turk J Agric For 1999;23(6):667–71.
49   Lawther JM, Sun R, Banks WB. Effects of extraction conditions and alkali type on yield and composition of wheat straw hemicellulose. J Appl Polym Sci 1996;60(11):1827–37.
50   Sweet MS, Winandy JE. Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine. Holzforschung 1999;53(3):311–7.
51   Mielenz JR. Ethanol production from biomass: Technology and commercialization status. Curr Opin Microbiol 2001;4(3):324–9.
52   Grabber JH. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 2005;45(3):820–31.
53   Demirbaş A. Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources 2005;27(4):327–37.
54   Ladisch R, Mosier NS, Youngmi KIM, Ximenes E, Hogsett D. Converting cellulose to biofuels. Chem Eng Prog 2010;106(3):56–63.
55   Yang B, Wyman CE. Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover with water. Biotechnol Bioeng 2004;86(1):88–98.
56   Zheng Y, Zhao J, Xu F, Li Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Pror Energy Combust Sci 2014;42:35–53.
57   Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. Biomass pretreatment: Fundamentals toward application. Biotechnol Adv 2011;29(6):675–85
doi: 10.1016/j.biotechadv.2011.05.005
58   Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 2014;123(15):143–56
doi: 10.1016/j.apenergy.2014.02.035
59   Yang B, Wyman CE. Pretreatment: The key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2008;2(1):26–40.
60   Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? In: Olsson L, editor Biofuels. Berlin: Springer; 2009. p. 67–93.
61   Zhu Z, Pan H. Woody biomass treatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour Technol 2010;101(13):4992–5002.
62   Olofsson K, Bertlisson M, Lidén G. A short review on SSF—An interesting process option from lignocellulosic feedstocks. Biotechnol Biofuels 2008;1:1–7.
63   Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009;100(1):10–8.
64   Delgenés JP, Penaud V, Moletta R. Pretreatments for the enhancement of anaerobic digestion of solid wastes. In: Mata-Alvarez J, editor Biomethanization of the organic fraction of municipal solid wastes . London: IWA Publishing; 2002. p. 201–28.
65   Montogomery LFR, Bochmann G. Pretreatment of feedstock for enhanced biogas production. Paris: IEA Bioenergy; 2014.
66   Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int J Mol Sci 2008;9(9):1621–51.
67   Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 2002;81(1):33–44.
68   Weil JR, Sarikaya A, Rau SL, Goetz J, Ladisch CM, Brewer M, et al.Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol 1998;73(1):1–17.
69   Shahriari H, Warith M, Hamoda M, Kennedy KJ. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide. Waste Manag 2012;32(1):41–52.
70   Xiao W, Clarkson WW. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 1997;8(1):61–6.
71   Sumphanwanich J, Leepipatpiboon N, Srinorakutara T, Akaracharanya A. Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation by Saccharomyces cerevisiae. Ann Microbiol 2008;58(2):219–25.
72   López Torres M, del Espinosa Lloréns M. Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Manag 2008;28(11):2229–34.
73   Achinas S, Euverink GJW. Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 2016;23:44–53.
74   Pecorini I, Baldi F, Carnevale EA, Corti A. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste. Waste Manag 2016;56:143–50.
75   Micolucci F, Gottardo M, Cavinato C, Pavan P, Bolzonella D. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Manag 2016;48:227–35.
76   Abramson M, Shoseyov O, Hirsch S, Shani Z. Genetic modifications of plant cell walls to increase biomass and bioethanol production. In: Lee JW, editor Advanced biofuels and bioproducts. New York: Springer; 2013. p. 315–38.
77   US Environmental Protection Agency (EPA). Biosolids technology fact sheet: Multi-stage anaerobic digestion. Report. Washington, DC: Office of Water, EPA; 2006Sep.
78   Yu L, Ma J, Frear C, Zaher U, Chen S. Two-stage anaerobic digestion systems wherein one of the stages comprises a two-phase system. United States Patent US 20130309740. 2013 Nov 21.
79   Vandevivere P, De Baere L, Verstraete W. Types of anaerobic digesters for solid wastes. In: Mata-Alvarez J, editor Biomethanization of the organic fraction of municipal solid wastes. Barcelona: IWA Publishing; 2002. p. 111–40.
80   California Environmental Protection Agency. Current anaerobic digestion technologies used for treatment of municipal organic solid waste. Report. California: California Integrated Waste Management Board; 2008.
81   Colussi I, Cortesi A, Piccolo CD, Galloa V, Fernandeza ASR, Vitanza R. Improvement of methane yield from maize silage by a two-stage anaerobic process. Chem Eng Trans 2013;32:151–6.
82   Marín Pérez C, Weber A. Two stage anaerobic digestion system: Hydrolysis of different substrate. Landtechnik 2013;68(4):2 52–5.
83   Yabu H, Sakai C, Fujiwara T, Nishio N, Nakashimada Y. Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping. J Biosci Bioeng 2011;111(3):312–9.
84   Park Y, Hong F, Cheon J, Hidaka T, Tsuno H. Comparison of thermophilic anaerobic digestion characteristics between single-phase and two-phase systems for kitchen garbage treatment. J Biosci Bioeng 2008;105(1):48–54.
85   Blonskaja V, Menert A, Vilu R. Use of two-stage anaerobic treatment for distillery waste. Adv Environ Res 2003;7(3):671–8.
86   Kim J, Novak JT, Higgins MJ. Multi-staged anaerobic sludge digestion processes. J Environ Eng 2011;137(8):0000372.
87   Nasr N, Elbeshbishy E, Hafez H, Nakhla G, El Naggar MH. Comparative assessment of single-stage and two-stage anaerobic digestion for the treatment of thin stillage. Bioresour Technol 2012;111:122–6.
88   Lindeboom REF, Fermoso FG, Weijma J, Zagt K, van Lier JB. Autogenerative high pressure digestion: Anaerobic digestion and biogas upgrading in a single step reactor system. Water Sci Technol 2011;64(3):647–53.
89   Merkle W, Zielonka S, Oechsner H, Lemmer A. High-pressure anaerobic digestion up to 180 bar: The effects on biogas production and upgrading. In: Proceedings of the Progress in Biogas III Conference; 2014 Sep 10–11; Stuttgart,Deutschland; 2014.
90   Bartlett DH. Pressure effects on in vivo microbial processes. Biochim Biophys Acta 2002;1595(1–2):367–81.
91   Merkle W, Baer K, Haag NL, Zielonka S, Ortloff F, Graf F, et al.High-pressure anaerobic digestion up to 100 bar: Influence of initial pressure on production kinetics and specific methane yields. Environ Technol 2017;38(3):337–44.
92   Fox MH, Noike T, Ohki T. Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste. Water Sci Technol 2003;48(4):77–84.
93   Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 2011;15(1):821–6.
94   Griffin ME, McMahon KD, Mackie RI, Raskin L. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng 1998;57(3):342–55.
95   Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: A review. Bioresour Technol 2008;99(10):4044–64.
96   Xu P, Koffas MAG. Metabolic engineering of Escherichia coli for biofuel production. Biofuels 2010;1(3):493–504
doi: 10.4155/bfs.10.13
97   Weng JK, Li X, Bonawitz ND, Chapple C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 2008;19(2):166–72.
98   Elferink SJWH, van Lis R, Heilig HGHJ, Akkermans ADL, Stams AJM. Detection and quantification of microorganisms in anaerobic bioreactors. Biodegradation 1998;9(3):169–77.
99   Karakashev D, Bastone DJ, Angelidaki I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 2005;71(1):331–8.
100   Klocke M, Nettmann E, Bergmann I, Mundt K, Souidiu K, Mumme J, et al.Characterization of the methanogenic Archaea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 2008;31(3):190–205.
101   Yu Y, Lee C, Kim J, Hwangs S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 2005;89(6):670–9.
102   Haruta S, Nakayama T, Nakamura K, Hemmi H, Ishii M, Igarashi Y, et al.Microbial diversity in biodegradation and reutilization processes of garbage. J Biosci Bioeng 2005;99(1):1–11. Erratum in: J Biosci Bioeng 2005;99(2):187–8.
103   Russo L, Ladisch M. Gaps in the research of 2nd generation transportation biofuels. Final report. Paris: IEA Bioenergy; 2008.
104   Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, et al.Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010;87(4):1303–15.
105   Lynd LR, Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: An update. Curr Opin Biotechnol 2005;16(5):577–83.
106   European Biofuels Technology Platform [Internet]. EBTP-SABS; c2007–2016 [cited 2016 Sep 9]. Development of enzymes and processes for cellulosic ethanol production. Ethanol fact sheet; [about 1 screens]. Available from: http://www.biofuelstp.eu/factsheets/ethanol-fact-sheet.html.
107   Blanch HW. Bioprocessing for biofuels. Curr Opin Biotechnol 2012;23(3):390–5.
108   Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, et al.Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies. Biofuels Bioprod Bioref 2010;4(1):77–93.
109   Msangi S. Biofuels and a green economy [Internet]. Washington, DC: IFPRI. [cited 2012 May 16]. Available from: http://www.ifpri.org/blog/biofuels-and-green-economy.
110   European Biogas Association. Biogas [Internet]. Brussels: EBA; c2013–2016. Available from: http://european-biogas.eu/biogas/.
111   Åhman M. Biomethane in the transport sector—An appraisal of the forgotten option. Energy Policy 2010;38(1):208–17.
112   European Environmental Agency. How much bioenergy can Europe produce without harming the environment? Report. Copenhagen: European Environmental Agency; 2006 Feb.
Related
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering