Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (3) : 285 -289
Research |
Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode
Ke Dang1,2,Tuo Wang1,2,Chengcheng Li1,2,Jijie Zhang1,2,Shanshan Liu1,2,Jinlong Gong1,2()
1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

This paper describes the combinational surface kinetics enhancement and surface states passivation of nickel-borate (Ni-Bi) co-catalyst for a hematite (Fe2O3) photoanode. The Ni-Bi-modified Fe2O3 photoanode exhibits a cathodic onset potential shift of 230 mV and a 2.3-fold enhancement of the photocurrent at 1.23 V, versus the reversible hydrogen electrode (RHE). The borate (Bi) in the Ni-Bi film promotes the release of protons for the oxygen evolution reaction (OER).

Keywords Nickel-borate      Hematite      Oxygen evolution reaction      Co-catalyst     
Corresponding Authors: Jinlong Gong   
Just Accepted Date: 17 May 2017   Online First Date: 21 June 2017    Issue Date: 30 June 2017
E-mail this article
E-mail Alert
Articles by authors
Ke Dang
Tuo Wang
Chengcheng Li
Jijie Zhang
Shanshan Liu
Jinlong Gong
Cite this article:   
Ke Dang,Tuo Wang,Chengcheng Li, et al. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
URL:     OR
1   Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238(5358):37–8
doi: 10.1038/238037a0
2   Nellist MR, Laskowski FAL, Lin F, Mills TJ, Boettcher SW. Semiconductor-electrocatalyst interfaces: Theory, experiment, and applications in photoelectrochemical water splitting. Acc Chem Res 2016;49(4):733–40
doi: 10.1021/acs.accounts.6b00001
3   Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, et al.Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J Am Chem Soc 2014;136(19):7077–84
doi: 10.1021/ja502128j
4   Zhong DK, Cornuz M, Sivula K, Gratzel M, Gamelin DR. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ Sci 2011;4(5):1759–64
doi: 10.1039/c1ee01034d
5   Seabold JA, Choi KS. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mater 2011;23(5):1105–12
doi: 10.1021/cm1019469
6   Dincă M, Surendranath Y, Nocera DG. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci USA 2010;107(23):10337–41
doi: 10.1073/pnas.1001859107
7   Bediako DK, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra VK, Nocera DG. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J Am Chem Soc 2012;134(15):6801–9
doi: 10.1021/ja301018q
8   Choi SK, Choi W, Park H. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys Chem Chem Phys 2013;15(17):6499–507
doi: 10.1039/c3cp00073g
9   Gan J, Lu X, Rajeeva BB, Menz R, Tong Y, Zheng Y. Efficient photoelectrochemical water oxidation over hydrogen-reduced nanoporous BiVO4 with Ni-Bi electrocatalyst. Chem Electro Chem 2015;2(9):1385–95.
10   Zhang P, Wang T, Chang X, Zhang L, Gong J. Synergistic cocatalytic effect of carbon nanodots and Co3O4 nanoclusters for the photoelectrochemical water oxidation on hematite. Angew Chem Int Ed 2016;128(19):5945–9
doi: 10.1002/ange.201600918
11   Li C, Hisatomi T, Watanabe O, Nakabayashi M, Shibata N, Domen K, et al.Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy Environ Sci 2015;8(5):1493–500
doi: 10.1039/C5EE00250H
12   Berglund SP, Abdi FF, Bogdanoff P, Chemseddine A, Friedrich D, van de Krol R. Comprehensive evaluation of CuBi2O4 as a photocathode material for photoelectrochemical water splitting. Chem Mater 2016;28(12):4231–42
doi: 10.1021/acs.chemmater.6b00830
13   Kumagai H, Minegishi T, Sato N, Yamada T, Kubota J, Domen K. Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes. J Mater Chem A 2015;3(16):8300–7
doi: 10.1039/C5TA01058F
14   Wang Z, Liu G, Ding C, Chen Z, Zhang F, Shi J, et al.Synergetic effect of conjugated Ni(OH)2/IrO2 cocatalyst on titanium-doped hematite photoanode for solar water splitting. J Phys Chem C 2015;119(34):19607–12
doi: 10.1021/acs.jpcc.5b04892
15   Kim JY, Youn DH, Kang K, Lee JS. Highly conformal deposition of an ultrathin FeOOH layer on a hematite nanostructure for efficient solar water splitting. Angew Chem 2016;128(36):11012–6
doi: 10.1002/ange.201605924
16   Ahmed AY, Ahmed MG, Kandiel TA. Modification of hematite photoanode with cobalt based oxygen evolution catalyst via bifunctional linker approach for efficient water splitting. J Phys Chem C 2016;120(41):23415–20
doi: 10.1021/acs.jpcc.6b08010
17   Malara F, Minguzzi A, Marelli M, Morandi S, Psaro R, Dal Santo V, et al.α-Fe2O3/NiOOH: An effective heterostructure for photoelectrochemical water oxidation. ACS Catal 2015;5(9):5292–300
doi: 10.1021/acscatal.5b01045
18   Klahr B, Hamann T. Water oxidation on hematite photoelectrodes: Insight into the nature of surface states through in situ spectroelectrochemistry. J Phys Chem C 2014;118(19):10393–9
doi: 10.1021/jp500543z
19   Yatom N, Neufeld O, Toroker MC. Toward settling the debate on the role of Fe2O3 surface states for water splitting. J Phys Chem C 2015;119(44):24789–95
doi: 10.1021/acs.jpcc.5b06128
20   Le Formal F, Tetreault N, Cornuz M, Moehl T, Gratzel M, Sivula K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci 2011;2(4):737–43
doi: 10.1039/C0SC00578A
21   Du C, Yang X, Mayer MT, Hoyt H, Xie J, McMahon G, et al.Hematite-based water splitting with low turn-on voltages. Angew Chem Int Ed 2013;52(48):12692–5
doi: 10.1002/anie.201306263
22   Kim TW, Choi KS. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014;343(6174):990–4
doi: 10.1126/science.1246913
23   Luo Z, Li C, Liu S, Wang T, Gong J. Gradient doping of phosphorus in Fe2O3 nanoarray photoanodes for enhanced charge separation. Chem Sci 2016;2017(8):91–100.
24   Chang X, Wang T, Zhang P, Zhang J, Li A, Gong J. Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J Am Chem Soc 2015;137(26):8356–9
doi: 10.1021/jacs.5b04186
25   Xu Y, Wang X, Chen H, Kuang D, Su C. Toward high performance photoelectrochemical water oxidation: Combined effects of ultrafine cobalt iron oxide nanoparticle. Adv Funct Mater 2016;26(24):4414–21
doi: 10.1002/adfm.201600232
26   Zhang M, Luo W, Zhang N, Li Z, Yu T, Zou Z. A facile strategy to passivate surface states on the undoped hematite photoanode for water splitting. Electrochem Commun 2012;23:41–3
doi: 10.1016/j.elecom.2012.06.040
27   Han L, Dong S, Wang E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 2016;28(42):9266–91
doi: 10.1002/adma.201602270
28   Ye KH, Wang Z, Gu J, Xiao S, Yuan Y, Zhu Y, et al.Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ Sci 2017;10(3):772–9
doi: 10.1039/C6EE03442J
29   Trześniewski BJ, Diaz-Morales O, Vermaas DA, Longo A, Bras W, Koper MTM, et al.In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity. J Am Chem Soc 2015;137(48):15112–21
doi: 10.1021/jacs.5b06814
30   Dionigi F, Strasser P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv Energy Mater 2016;6(23):1600621–40
doi: 10.1002/aenm.201600621
31   Pham HH, Cheng MJ, Frei H, Wang LW. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4 (001) surface. ACS Catal 2016;6(8):5610–7
doi: 10.1021/acscatal.6b00713
32   Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J Am Chem Soc 2015;137(3):1305–13
doi: 10.1021/ja511559d
33   Koper MTM. Theory of the transition from sequential to concerted electrochemical proton-electron transfer. Phys Chem Chem Phys 2013;15(5):1399–407
doi: 10.1039/C2CP42369C
[1]  Supplementary Information Download
No related articles found!
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2