Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (3) : 423 -427     https://doi.org/10.1016/J.ENG.2017.03.006
Research |
Application of Microwave Melting for the Recovery of Tin Powder
Lei Xu1,2(),Jinhui Peng1,2(),Hailong Bai3,C. Srinivasakannan4(),Libo Zhang1,2,Qingtian Wu1,Zhaohui Han1,2,Shenghui Guo1,2,Shaohua Ju1,2,Li Yang1,2
1. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
3. Yunnan Tin Group (Holding) Company Limited, Gejiu, Yunnan 661000, China
4. Chemical Engineering Program, The Petroleum Institute, P.O. Box 2533, Abu Dhabi, United Arab Emirates
Abstract
Abstract  

The present work explores the application of microwave heating for the melting of powdered tin. The morphology and particle size of powdered tin prepared by the centrifugal atomization method were characterized. The tin particles were uniform and spherical in shape, with 90% of the particles in the size range of 38–75 μm. The microwave absorption characteristic of the tin powder was assessed by an estimation of the dielectric properties. Microwave penetration was found to have good volumetric heating on powdered tin. Conduction losses were the main loss mechanisms for powdered tin by microwave heating at temperatures above 150 °C. A 20 kW commercial-scale microwave tin-melting unit was designed, developed, and utilized for production. This unit achieved a heating rate that was at least 10 times higher than those of conventional methods, as well as a far shorter melting duration. The results suggest that microwave heating accelerates the heating rate and shortens the melting time. Tin recovery rate was 97.79%, with a slag ratio of only 1.65% and other losses accounting for less than 0.56%. The unit energy consumption was only 0.17 (kW·h)·kg−1—far lower than the energy required by conventional melting methods. Thus, the microwave melting process improved heating efficiency and reduced energy consumption.

Keywords Microwave heating      Melting      Tin powder      Microwave equipment      Recovery     
Fund: 
Corresponding Authors: Lei Xu,Jinhui Peng,C. Srinivasakannan   
Just Accepted Date: 17 May 2017   Online First Date: 21 June 2017    Issue Date: 30 June 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lei Xu
Jinhui Peng
Hailong Bai
C. Srinivasakannan
Libo Zhang
Qingtian Wu
Zhaohui Han
Shenghui Guo
Shaohua Ju
Li Yang
Cite this article:   
Lei Xu,Jinhui Peng,Hailong Bai, et al. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.006     OR     http://engineering.org.cn/EN/Y2017/V3/I3/423
References
1   Louzguine-Luzgin DV, Xie GQ, Li S, Inoue A, Yoshikawa N, Mashiko K, et al.Microwave-induced heating and sintering of metallic glasses. J Alloys Compd 2009;483(1–2):78–81
doi: 10.1016/j.jallcom.2008.07.158
2   Mondal A, Shukla A, Upadhyaya A, Agrawal D. Effect of porosity and particle size on microwave heating of copper. Sci Sinter 2010;42(2):169–82
doi: 10.2298/SOS1002169M
3   Anklekar RM, Agrawal DK, Roy R. Microwave sintering and mechanical properties of PM copper steel. Powder Metall 2001;44(4):355–62
doi: 10.1179/pom.2001.44.4.355
4   Anklekar RM, Bauer K, Agrawal DK, Roy R. Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts. Powder Metall 2005;48(1):39–46
doi: 10.1179/003258905X37657
5   Plazl I, Pipus G, Koloini T. Microwave heating of the continuous flow catalytic reactor in a nonuniform electric field. AIChE J 1997;43(3):754–60
doi: 10.1002/aic.690430320
6   Roy R, Agrawal D, Cheng J, Gedevanishvili S. Full sintering of powder-metal bodies in a microwave field. Nature 1999;399(6737):668–70
doi: 10.1038/21390
7   Rybakov KI, Semenov VE, Egorov SV, Eremeev AG, Plotnikov IV, Bykov YV. Microwave heating of conductive powder materials. J Appl Phys 2006;99(2):023506
doi: 10.1063/1.2159078
8   Peng J, Zhang L, Xia H, Ju S, Chen G, Xu L. New technology of unconventional metallurgy.Beijing: Metallurgical Industry Press; 2015.
9   Birnboim A, Gershon D, Calame J, Birman A, Carmel Y, Rodgers J, et al.Comparative study of microwave sintering of zinc oxide at 2.45, 30, and 83 GHz. J Am Ceram Soc 1998;81(6):1493–501
doi: 10.1111/j.1151-2916.1998.tb02508.x
10   Mishra RR, Sharma AK. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Compos Part A: Appl Sci Manuf 2016;81:78–97
doi: 10.1016/j.compositesa.2015.10.035
11   Rong Z, Fan X, Yang F, Cai X, Li G. Microwave activated hot pressing: A new consolidation technique and its application to fine crystal bismuth telluride based compounds. Powder Technol 2014;267:119–25
doi: 10.1016/j.powtec.2014.07.022
12   Rong Z, Fan X, Yang F, Cai X, Han X, Li G. Microwave activated hot pressing: A new opportunity to improve the thermoelectric properties of n-type Bi2Te3−xSex bulks. Mater Res Bull 2016;83:122–7
doi: 10.1016/j.materresbull.2016.05.030
13   Yang F, Fan X, Rong Z, Cai X, Li G. Lattice thermal conductivity reduction due to in situ-generated nano-phase in Bi0.4Sb1.6Te3 alloys by microwave-activated hot pressing. J Electron Mater 2014;43(11):4327–34
doi: 10.1007/s11664-014-3339-3
14   Fan X, Rong Z, Yang F, Cai X, Han X, Li G. Effect of process parameters of microwave activated hot pressing on the microstructure and thermoelectric properties of Bi2Te3-based alloys. J Alloys Compd 2015;630:282–7
doi: 10.1016/j.jallcom.2015.01.075
15   Chen G, Peng H, Silberschmidt VV, Chan Y, Liu C, Wu F. Performance of Sn-3.0Ag-0.5Cu composite solder with TiC reinforcement: Physical properties, solderability and microstructural evolution under isothermal ageing. J Alloys Compd 2016;685:680–9
doi: 10.1016/j.jallcom.2016.05.245
16   Minagawa K, Kakisawa H, Osawa Y, Takamori S, Halada K. Production of fine spherical lead-free solder powders by hybrid atomization. Sci Technol Adv Mater 2005;6(3–4):325–9
doi: 10.1016/j.stam.2005.03.010
17   Plookphol T, Wisutmethangoon S, Gonsrang S. Influence of process parameters on SAC305 lead-free solder powder produced by centrifugal atomization. Powder Technol 2011;214(3):506–12
doi: 10.1016/j.powtec.2011.09.015
18   Gerdes T, Willert-Porada M, Park HS. Microwave sintering of ferrous PM materials. In: Proceedings of the International Conference on Powder Metallurgy & Particulate Materials ; 2006 Jun 18–21; San Diego , USA. New Jersey: Metal Powder Industries Federation; 2006.
19   Mishra P, Upadhyaya A, Sethi G. Modeling of microwave heating of particulate metals. Metall Mater Trans B 2006;37(5):839–45
doi: 10.1007/s11663-006-0066-z
20   Mondal A, Agrawal D, Upadhyaya A. Microwave heating of pure copper powder with varying particle size and porosity. J Microw Power Electromagn Energy 2008;43(1):5–10
doi: 10.1080/08327823.2008.11688599
21   Tripathi M, Sahu JN, Ganesan P, Dey TK. Effect of temperature on dielectric properties and penetration depth of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS. Fuel 2015;153:257–66
doi: 10.1016/j.fuel.2015.02.118
22   Chandrasekaran S, Basak T, Ramanathan S. Experimental and theoretical investigation on microwave melting of metals. J Mater Process Technol 2011;211(3):482–7
doi: 10.1016/j.jmatprotec.2010.11.001
23   Luo SD, Yan M, Schaffer GB, Qian M. Sintering of titanium in vacuum by microwave radiation. Metall Mater Trans A 2011;42(8):2466–74
doi: 10.1007/s11661-011-0645-8
Related
[1] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[2] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[3] Dongdong Gu, Chenglong Ma, Mujian Xia, Donghua Dai, Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675 -684 .
[4] Qiong Zhang, Christine Prouty, Julie B. Zimmerman, James R. Mihelcic. More than Target 6.3: A Systems Approach to Rethinking Sustainable Development Goals in a Resource-Scarce World[J]. Engineering, 2016, 2(4): 481 -489 .
[5] Weimin Ma, Yidan Yuan, Bal Raj Sehgal. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs[J]. Engineering, 2016, 2(1): 103 -111 .
[6] Chao Guo, Wenjun Ge, Feng Lin. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies[J]. Engineering, 2015, 1(1): 124 -130 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering