Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (3) : 393 -401     https://doi.org/10.1016/J.ENG.2017.03.016
Research |
Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation
Ee Teng Kho,Salina Jantarang,Zhaoke Zheng,Jason Scott(),Rose Amal()
Particles and Catalysis Research Laboratory, School of Chemical Sciences and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
Abstract
Abstract  

Solar-powered carbon dioxide (CO2)-to-fuel conversion presents itself as an ideal solution for both CO2 mitigation and the rapidly growing world energy demand. In this work, the heating effect of light irradiation onto a bed of supported nickel (Ni) catalyst was utilized to facilitate CO2 conversion. Ceria (CeO2)-titania (TiO2) oxide supports of different compositions were employed and their effects on photothermal CO2 conversion examined. Two factors are shown to be crucial for instigating photothermal CO2 methanation activity: ① Fine nickel deposits are required for both higher active catalyst area and greater light absorption capacity for the initial heating of the catalyst bed; and ② the presence of defect sites on the support are necessary to promote adsorption of CO2 for its subsequent activation. Titania inclusion within the support plays a crucial role in maintaining the oxygen vacancy defect sites on the (titanium-doped) cerium oxide. The combination of elevated light absorption and stabilized reduced states for CO2 adsorption subsequently invokes effective photothermal CO2 methanation when the ceria and titania are blended in the ideal ratio(s).

Keywords Photothermal      CO2 reduction      Nickel      Ceria      Titania     
Corresponding Authors: Jason Scott,Rose Amal   
Just Accepted Date: 17 May 2017   Issue Date: 30 June 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ee Teng Kho
Salina Jantarang
Zhaoke Zheng
Jason Scott
Rose Amal
Cite this article:   
Ee Teng Kho,Salina Jantarang,Zhaoke Zheng, et al. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.016     OR     http://engineering.org.cn/EN/Y2017/V3/I3/393
References
1   Kale MJ, Avanesian T, Xin H, Yan J, Christopher P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds. Nano Lett 2014;14(9):5405–12
doi: 10.1021/nl502571b
2   Zhang X, Chen Y, Liu R, Tsai DP. Plasmonic photocatalysis. Rep Prog Phys 2013;76(4):046401
doi: 10.1088/0034-4885/76/4/046401
3   Lou Z, Wang Z, Huang B, Dai Y. Synthesis and activity of plasmonic photocatalysts. ChemCatChem 2014;6(9):2456–76
doi: 10.1002/cctc.201402261
4   Cheng H, Fuku K, Kuwahara Y, Mori K, Yamashita H. Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. J Mater Chem A 2015;3(10):5244–58
doi: 10.1039/C4TA06484D
5   Jiang R, Li B, Fang C, Wang J. Metal/semiconductor hybrid nanostructures for plasmon—Enhanced applications. Adv Mater 2014;26(31):5274–309
doi: 10.1002/adma.201400203
6   Wang C, Ranasingha O, Natesakhawat S, Ohodnicki PR, Andio M, Lewis JP, et al.Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 2013;5(15):6968–74
doi: 10.1039/c3nr02001k
7   Meng X, Wang T, Liu L, Ouyang S, Li P, Hu H, et al.Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: An alternative approach for solar fuel production. Angew Chem 2014;126(43):11662–6.German
doi: 10.1002/ange.201404953
8   Trovarelli A, Deleitenburg C, Dolcetti G, Lorca J. CO2 methanation under transient and steady-state conditions over Rh/CeO2 and CeO2-promoted Rh/SiO2: The role of surface and bulk ceria. J Catal 1995;151(1):111–24
doi: 10.1006/jcat.1995.1014
9   Sakurai H, Haruta M. Carbon dioxide and carbon monoxide hydrogenation over gold supported on titanium, iron, and zinc oxides. Appl Catal A 1995;127(1–2):93–105
doi: 10.1016/0926-860X(95)00058-5
10   Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 2011;40(7):3703–27
doi: 10.1039/c1cs15008a
11   Graciani J, Mudiyanselage K, Xu F, Baber AE, Evans J, Senanayake SD, et al.Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014;345(6196):546–50
doi: 10.1126/science.1253057
12   Yang X, Kattel S, Senanayake SD, Boscoboinik JA, Nie X, Graciani J, et al.Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface. J Am Chem Soc 2015;137(32):10104–7
doi: 10.1021/jacs.5b06150
13   Park JB, Graciani J, Evans J, Stacchiola D, Ma S, Liu P, et al.High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proc Natl Acad Sci USA 2009;106(13):4975–80
doi: 10.1073/pnas.0812604106
14   Park JB, Graciani J, Evans J, Stacchiola D, Senanayake SD, Barrio L, et al.Gold, copper, and platinum nanoparticles dispersed on CeOx/TiO2(110) surfaces: High water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. J Am Chem Soc 2010;132(1):356–63
doi: 10.1021/ja9087677
15   Graciani J, Plata JJ, Sanz JF, Liu P, Rodriguez JA. A theoretical insight into the catalytic effect of a mixed-metal oxide at the nanometer level: The case of the highly active metal/CeOx/TiO2(110) catalysts. J Chem Phys 2010;132(10):104703
doi: 10.1063/1.3337918
16   Farmer JA, Campbell CT. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 2010;329(5994):933–6
doi: 10.1126/science.1191778
17   Cargnello M, Doan-Nguyen VV, Gordon TR, Diaz RE, Stach EA, Gorte RJ, et al.Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 2013;341(6147):771–3
doi: 10.1126/science.1240148
18   Kho ET, Lovell E, Wong RJ, Scott J, Amal R. Manipulating ceria-titania binary oxide features and their impact as nickel catalyst supports for low temperature steam reforming of methane. Appl Catal A 2017;530:111–24
doi: 10.1016/j.apcata.2016.11.019
19   Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 1995;99(45):16646–54
doi: 10.1021/j100045a026
20   Chen HI, Chang HY. Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceram Int 2005;31(6):795–802
doi: 10.1016/j.ceramint.2004.09.006
21   Rahman MM, Im SH, Lee JJ. Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles. Nanoscale 2016;8(11):5884–91
doi: 10.1039/C5NR08155F
22   Bereketidou O, Goula M. Biogas reforming for syngas production over nickel supported on ceria-alumina catalysts. Catal Today 2012;195(1):93–100
doi: 10.1016/j.cattod.2012.07.006
23   Wootsch A, Descorme C, Duprez D. Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceria-zirconia and alumina-supported Pt catalysts. J Catal 2004;225(2):259–66
doi: 10.1016/j.jcat.2004.04.017
24   Li Y, Wang X, Xie C, Song C. Influence of ceria and nickel addition to alumina-supported Rh catalyst for propane steam reforming at low temperatures. Appl Catal A 2009;357(2):213–22
doi: 10.1016/j.apcata.2009.01.025
25   De Rogatis L, Montini T, Casula MF, Fornasiero P. Design of Rh@Ce0.2Zr0.8O2-Al2O3 nanocomposite for ethanol steam reforming. J Alloys Compd 2008;451(1–2):516–20
doi: 10.1016/j.jallcom.2007.04.231
26   Cuauhtémoc I, Del Angel G, Torres G, Bertin V. Catalytic wet air oxidation of gasoline oxygenates using Rh/γ-Al2O3 and Rh/γ-Al2O3-CeO2 catalysts. Catal Today 2008;(133–5):588–93.
27   Amjad UES, Vita A, Galletti C, Pino L, Specchia S. Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts. Ind Eng Chem Res 2013;52(44):15428–36
doi: 10.1021/ie400679h
28   Vita A, Cristiano G, Italiano C, Pino L, Specchia S. Syngas production by methane oxy-steam reforming on Me/CeO2 (Me= Rh, Pt, Ni) catalyst lined on cordierite monoliths. Appl Catal B 2015;162:551–63
doi: 10.1016/j.apcatb.2014.07.028
29   Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 2006;110(14):7238–48
doi: 10.1021/jp057170o
30   Boudjahem AG, Monteverdi S, Mercy M, Bettahar MM. Nanonickel particles supported on silica. Morphology effects on their surface and hydrogenating properties. Catal Lett 2004;97(3):177–83
doi: 10.1023/B:CATL.0000038581.80872.7b
31   Boudjahem A, Monteverdi S, Mercy M, Bettahar MM. Study of nickel catalysts supported on silica of low surface area and prepared by reduction of nickel acetate in aqueous hydrazine. J Catal 2004;221(2):325–34
doi: 10.1016/j.jcat.2003.08.002
32   Cesteros Y, Salagre P, Medina F, Sueiras J. Synthesis and characterization of several Ni/NiAl2O4 catalysts active for the 1,2,4-trichlorobenzene hydrodechlorination. Appl Catal B 2000;25(4):213–27
doi: 10.1016/S0926-3373(99)00133-2
33   Bal R, Tope BB, Das TK, Hegde SG, Sivasanker S. Alkali-loaded silica, a solid base: Investigation by FTIR spectroscopy of adsorbed CO2 and its catalytic activity. J Catal 2001;204(2):358–63
doi: 10.1006/jcat.2001.3402
34   Wang SG, Cao DB, Li YW, Wang J, Jiao H. Chemisorption of CO2 on nickel surfaces. J Phys Chem B 2005;109(40):18956–63
doi: 10.1021/jp052355g
35   Falconer JL, Za?li AE. Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. J Catal 1980;62(2):280–5
doi: 10.1016/0021-9517(80)90456-X
36   Edmonds T, Pitkethly R. The adsorption of carbon monoxide and carbon dioxide at the (111) face of nickel observed by leed. Surf Sci 1969;15(1):137–63
doi: 10.1016/0039-6028(69)90071-5
37   Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS. New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 2006;600(9):1771–9
doi: 10.1016/j.susc.2006.01.041
38   Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta JC. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques. J Phys Chem B 2003;107(22):5162–7
doi: 10.1021/jp0344601
39   Sinha AK, Suzuki K. Preparation and characterization of novel mesoporous ceria-titania. J Phys Chem B 2005;109(5):1708–14
doi: 10.1021/jp046391b
40   Rynkowski J, Farbotko J, Touroude R, Hilaire L. Redox behaviour of ceria-titania mixed oxides. Appl Catal A 2000;203(2):335–48
doi: 10.1016/S0926-860X(00)00497-X
41   Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 2013;52(29):7372–408
doi: 10.1002/anie.201207199
42   Navalón S, Dhakshinamoorthy A, Álvaro M, Garcia H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013;6(4):562–77
doi: 10.1002/cssc.201200670
43   Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Photocatalytic conversion of CO2 in water over layered double hydroxides. Angew Chem 2012;124(32):8132–5. German
doi: 10.1002/ange.201201847
44   Lo CC, Hung CH, Yuan CS, Wu JF. Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol Energy Mater Sol Cells 2007;91(19):1765–74
doi: 10.1016/j.solmat.2007.06.003
45   Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int J Hydrogen Energ 2012;37(7):5527–31
doi: 10.1016/j.ijhydene.2011.12.122
Metrics
[1] Supplementary Information Download
Related
[1] Ke Dang,Tuo Wang,Chengcheng Li,Jijie Zhang,Shanshan Liu,Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[2] R. Lyle Hood, Rudy T. Andriani, Tobias E. Ecker, John L. Robertson, Christopher G. Rylander. Characterizing Thermal Augmentation of Convection-Enhanced Drug Delivery with the Fiberoptic Microneedle Device[J]. Engineering, 2015, 1(3): 344 -350 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering