Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (3) : 365 -378
Research |
Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation
Mu Xiao,Songcan Wang,Supphasin Thaweesak,Bin Luo,Lianzhou Wang()
Nanomaterials Center, School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia

Photocatalytic water splitting, which directly converts solar energy into hydrogen, is one of the most desirable solar-energy-conversion approaches. The ultimate target of photocatalysis is to explore efficient and stable photocatalysts for solar water splitting. Tantalum (oxy)nitride-based materials are a class of the most promising photocatalysts for solar water splitting because of their narrow bandgaps and sufficient band energy potentials for water splitting. Tantalum (oxy)nitride-based photocatalysts have experienced intensive exploration, and encouraging progress has been achieved over the past years. However, the solar-to-hydrogen (STH) conversion efficiency is still very far from its theoretical value. The question of how to better design these materials in order to further improve their water-splitting capability is of interest and importance. This review summarizes the development of tantalum (oxy)nitride-based photocatalysts for solar water spitting. Special interest is paid to important strategies for improving photocatalytic water-splitting efficiency. This paper also proposes future trends to explore in the research area of tantalum-based narrow bandgap photocatalysts for solar water splitting.

Keywords Tantalum-based photocatalyst      Narrow bandgap      Water splitting      Hydrogen     
Corresponding Authors: Lianzhou Wang   
Just Accepted Date: 22 May 2017   Issue Date: 30 June 2017
E-mail this article
E-mail Alert
Articles by authors
Mu Xiao
Songcan Wang
Supphasin Thaweesak
Bin Luo
Lianzhou Wang
Cite this article:   
Mu Xiao,Songcan Wang,Supphasin Thaweesak, et al. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
URL:     OR
1   Dunn S. Hydrogen futures: Toward a sustainable energy system. Int J Hydrogen Energy 2002;27(3):235–64
doi: 10.1016/S0360-3199(01)00131-8
2   Graetz J. New approaches to hydrogen storage. Chem Soc Rev 2009;38(1):73–82
doi: 10.1039/B718842K
3   Holladay JD, Hu J, King DL, Wang Y. An overview of hydrogen production technologies. Catal Today 2009;139(4):244–60
doi: 10.1016/j.cattod.2008.08.039
4   Conte M, Prosini PP, Passerini S. Overview of energy/hydrogen storage: State-of-the-art of the technologies and prospects for nanomaterials. Mater Sci Eng B 2004;108(1–2):2–8
doi: 10.1016/j.mseb.2003.10.107
5   Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ Sci 2015;8(3):731–59
doi: 10.1039/C4EE03271C
6   Acar C, Dincer I, Naterer GF. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energy Res 2016;40(11):1449–73
doi: 10.1002/er.3549
7   Jafari T, Moharreri E, Amin A, Miao R, Song W, Suib S. Photocatalytic water splitting—The untamed dream: A review of recent advances. Molecules 2016;21(7):900
doi: 10.3390/molecules21070900
8   Chen S, Thind SS, Chen A. Nanostructured materials for water splitting-state of the art and future needs: A mini-review. Electrochem Commun 2016;63:10–7
doi: 10.1016/j.elecom.2015.12.003
9   Chen J, Zhao D, Diao Z, Wang M, Shen S. Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: A case study of (Co, Ni)Fe2O4 modification. Sci Bull 2016;61(4):292–301
doi: 10.1007/s11434-016-0995-0
10   Liu Y, Tian L, Tan X, Li X, Chen X. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci Bull 2017;62(6):431–41
doi: 10.1016/j.scib.2017.01.034
11   Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009;38(1):253–78
doi: 10.1039/B800489G
12   Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Nano-photocatalytic materials: Possibilities and challenges. Adv Mater 2012;24(2):229–51
doi: 10.1002/adma.201102752
13   Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 2014;43(22):7520–35
doi: 10.1039/C3CS60378D
14   Zhang P, Zhang J, Gong J. Tantalum-based semiconductors for solar water splitting. Chem Soc Rev 2014;43(13):4395–422
doi: 10.1039/C3CS60438A
15   Zou Z, Ye J, Sayama K, Arakawa H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001;414(6864):625–7
doi: 10.1038/414625a
16   Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, et al.Photocatalyst releasing hydrogen from water. Nature 2006;440(7082):295
doi: 10.1038/440295a
17   Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, et al.Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 2007;111(2):1042–8
doi: 10.1021/jp0656532
18   Maeda K, Lu D, Domen K. Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration. Chemistry 2013;19(16):4986–91
doi: 10.1002/chem.201300158
19   Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, et al.Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015;347(6225):970–4
doi: 10.1126/science.aaa3145
20   Meng A, Zhang J, Xu D, Cheng B, Yu J. Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on (101) and (001) facets. Appl Catal B 2016;198:286–94
doi: 10.1016/j.apcatb.2016.05.074
21   Pan C, Takata T, Nakabayashi M, Matsumoto T, Shibata N, Ikuhara Y, et al.A complex perovskite-type oxynitride: The first photocatalyst for water splitting operable at up to 600 nm. Angew Chem Int Ed 2015;54(10):2955–9
doi: 10.1002/anie.201410961
22   Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, et al.Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 2011;133(28):10878–84
doi: 10.1021/ja2025454
23   Frame FA, Osterloh FE. CdSe-MoS2: A quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J Phys Chem C 2010;114(23):10628–33
doi: 10.1021/jp101308e
24   Tsuji I, Kato H, Kudo A. Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS-CuInS2-AgInS2 solid-solution photocatalyst. Angew Chem Int Ed 2005;117(23):3631–4
doi: 10.1002/ange.200500314
25   Yoneyama H. Electrochemical aspects of light-induced heterogeneous reactions on semiconductors. Crit Rev Solid State Mater Sci 1993;18(1):69–111
doi: 10.1080/10408439308243416
26   Kazunari D, Kondo JN, Michikazu H, Tsuyoshi T. Photo- and mechano-catalytic overall water splitting reactions to form hydrogen and oxygen on heterogeneous catalysts. Bull Chem Soc Jpn 2000;73(6):1307–31
doi: 10.1246/bcsj.73.1307
27   Kudo A. Development of photocatalyst materials for water splitting. Int J Hydrogen Energy 2006;31(2):197–202
doi: 10.1016/j.ijhydene.2005.04.050
28   Shangguan W. Hydrogen evolution from water splitting on nanocomposite photocatalysts. Sci Technol Adv Mater 2007;8(1–2):76–81
doi: 10.1016/j.stam.2006.09.007
29   Kudo A. Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int J Hydrogen Energy 2007;32(14):2673–8
doi: 10.1016/j.ijhydene.2006.09.010
30   Maeda K, Domen K. New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 2007;111(22):7851–61
doi: 10.1021/jp070911w
31   Osterloh FE. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 2013;42(6):2294–320
doi: 10.1039/C2CS35266D
32   Cao S, Low J, Yu J, Jaroniec M. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 2015;27(13):2150–76
doi: 10.1002/adma.201500033
33   Zhang G, Liu G, Wang L, Irvine JTS. Inorganic perovskite photocatalysts for solar energy utilization. Chem Soc Rev 2016;45(21):5951–84
doi: 10.1039/C5CS00769K
34   Xu Y, Kraft M, Xu R. Metal-free carbonaceous electrocatalysts and photocatalysts for water splitting. Chem Soc Rev 2016;45(11):3039–52
doi: 10.1039/C5CS00729A
35   Yuan L, Han C, Yang MQ, Xu YJ. Photocatalytic water splitting for solar hydrogen generation: Fundamentals and recent advancements. Int Rev Phys Chem 2016;35(1):1–36
doi: 10.1080/0144235X.2015.1127027
36   Grätzel M. Photoelectrochemical cells. Nature 2001;414(6861):338–44
doi: 10.1038/35104607
37   Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, et al.Solar water splitting cells. Chem Rev 2010;110(11):6446–73
doi: 10.1021/cr1002326
38   Li Z, Luo W, Zhang M, Feng J, Zou Z. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 2013;6(2):347–70
doi: 10.1039/C2EE22618A
39   Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD, et al.Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 2006;31(14):1999–2017
doi: 10.1016/j.ijhydene.2006.01.014
40   Wang D, Hisatomi T, Takata T, Pan C, Katayama M, Kubota J, et al.Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew Chem Int Ed 2013;52(43):11252–6
doi: 10.1002/anie.201303693
41   Nurlaela E, Ziani A, Takanabe K. Tantalum nitride for photocatalytic water splitting: Concept and applications. Mater Renew Sust Energy 2016;5(4):18
doi: 10.1007/s40243-016-0083-z
42   Moriya Y, Takata T, Domen K. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 2013;257(13–14):1957–69
doi: 10.1016/j.ccr.2013.01.021
43   Go H, Akio I, Tsuyoshi T, Kondo JN, Michikazu H, Kazunari D. Ta3N5 as a novel visible light-driven photocatalyst (λ<600 nm). Chem Lett 2002;31(7):736–7
doi: 10.1246/cl.2002.736
44   Nurlaela E, Ould-Chikh S, Llorens I, Hazemann JL, Takanabe K. Establishing efficient cobalt-based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst. Chem Mater 2015;27(16):5685–94
doi: 10.1021/acs.chemmater.5b02139
45   Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew Chem Int Ed 2015;54(10):3047–51
doi: 10.1002/anie.201409906
46   Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, et al.Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 2002;106(29):6750–3
doi: 10.1021/jp025961+
47   Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤500 nm). Chem Commun 2002;(16):1698–9
doi: 10.1039/B202393H
48   Hara M, Hitoki G, Takata T, Kondo JN, Kobayashi H, Domen K. TaON and Ta3N5 as new visible light driven photocatalysts. Catal Today 2003;78(1–4):555–60
doi: 10.1016/S0920-5861(02)00354-1
49   Takata T, Pan C, Domen K. Design and development of oxynitride photocatalysts for overall water splitting under visible light irradiation. ChemElectroChem 2016;3(1):31–7
doi: 10.1002/celc.201500324
50   Matoba T, Maeda K, Domen K. Activation of BaTaO2N photocatalyst for enhanced non-sacrificial hydrogen evolution from water under visible light by forming a solid solution with BaZrO3. Chemistry 2011;17(52):14731–5
doi: 10.1002/chem.201102970
51   Xu J, Pan C, Takata T, Domen K. Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation. Chem Commun 2015;51(33):7191–4
doi: 10.1039/C5CC01728A
52   Maeda K. (Oxy)nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting. Phys Chem Chem Phys 2013;15(26):10537–48
doi: 10.1039/c2cp43914j
53   He Y, Thorne JE, Wu CH, Ma P, Du C, Dong Q, et al.What limits the performance of Ta3N5 for solar water splitting? Chem 2016;1(4):640–55
doi: 10.1016/j.chempr.2016.09.006
54   Chun WJ, Ishikawa A, Fujisawa H, Takata T, Kondo JN, Hara M, et al.Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J Phys Chem B 2003;107(8):1798–803
doi: 10.1021/jp027593f
55   Balaz S, Porter SH, Woodward PM, Brillson LJ. Electronic structure of tantalum oxynitride perovskite photocatalysts. Chem Mater 2013;25(16):3337–43
doi: 10.1021/cm401815w
56   Higashi M, Domen K, Abe R. Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ Sci 2011;4(10):4138–47
doi: 10.1039/c1ee01878g
57   Yokoyama D, Hashiguchi H, Maeda K, Minegishi T, Takata T, Abe R, et al.Ta3N5 photoanodes for water splitting prepared by sputtering. Thin Solid Films 2011;519(7):2087–92
doi: 10.1016/j.tsf.2010.10.055
58   Feng X, Latempa TJ, Basham JI, Mor GK, Varghese OK, Grimes CA. Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett 2010;10(3):948–52
doi: 10.1021/nl903886e
59   Ritala M, Kalsi P, Riihelä D, Kukli K, Leskelä M, Jokinen J. Controlled growth of TaN, Ta3N5, and TaOxNy thin films by atomic layer deposition. Chem Mater 1999;11(7):1712–8
doi: 10.1021/cm980760x
60   Fang Z, Aspinall HC, Odedra R, Potter RJ. Atomic layer deposition of TaN and Ta3N5 using pentakis(dimethylamino)tantalum and either ammonia or monomethylhydrazine. J Cryst Growth 2011;331(1):33–9
doi: 10.1016/j.jcrysgro.2011.07.012
61   Zhen C, Wang L, Liu G, Lu GQ, Cheng HM. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Chem Commun 2013;49(29):3019–21
doi: 10.1039/c3cc40760h
62   Pinaud BA, Vailionis A, Jaramillo TF. Controlling the structural and optical properties of Ta3N5 films through nitridation temperature and the nature of the Ta metal. Chem Mater 2014;26(4):1576–82
doi: 10.1021/cm403482s
63   Park JC, Pee JH, Park HH. Effect of presynthesis of Ta precursor on the formation of Ta nitrides. J Mater Res 2010;25(5):835–41
doi: 10.1557/JMR.2010.0114
64   Kishida K, Watanabe T. Improvement of photocatalytic activity of tantalum nitride by ammonothermal treatment at high pressure. J Solid State Chem 2012;191:15–8
doi: 10.1016/j.jssc.2012.02.060
65   Lee Y, Nukumizu K, Watanabe T, Takata T, Hara M, Yoshimura M, et al.Effect of 10 MPa ammonia treatment on the activity of visible light responsive Ta3N5 photocatalyst. Chem Lett 2006;35(4):352–3
doi: 10.1246/cl.2006.352
66   Brauer G, Weidlein JR. Synthesis and properties of red tantalum nitride Ta3N5. Angew Chem 1965;77(5):218–9. German
doi: 10.1002/ange.19650770510
67   Murakami N, Prieto Mahaney OO, Abe R, Torimoto T, Ohtani B. Double-beam photoacoustic spectroscopic studies on transient absorption of titanium (IV) oxide photocatalyst powders. J Phys Chem C 2007;111(32):11927–35
doi: 10.1021/jp071362x
68   Abe R, Takami H, Murakami N, Ohtani B. Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Soc Chem 2008;130(25):7780–1
doi: 10.1021/ja800835q
69   Takata T, Lu D, Domen K. Synthesis of structurally defined Ta3N5 particles by flux-assisted nitridation. Cryst Growth Des 2011;11(1):33–8
doi: 10.1021/cg901025e
70   Xiao M, Li Y, Lu Y, Ye Z. Synthesis of ZrO2: Fe nanostructures with visible-light driven H2 evolution activity. J Mater Chem A 2015;3(6):2701–6
doi: 10.1039/C4TA05931J
71   Li Y, Li F, Li X, Song H, Lou Z, Ye Z, et al.Ultrahigh efficient water oxidation under visible light: Using Fe dopants to integrate nanostructure and cocatalyst in LaTiO2N system. Nano Energy 2016;19:437–45
doi: 10.1016/j.nanoen.2015.10.017
72   Shen S, Zhao L, Zhou Z, Guo L. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. J Phys Chem C 2008;112(41):16148–55
doi: 10.1021/jp804525q
73   Hong J, Xia X, Wang Y, Xu R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem 2012;22(30):15006–12
doi: 10.1039/c2jm32053c
74   Zuo F, Wang L, Wu T, Zhang Z, Borchardt D, Feng P. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J Am Chem Soc 2010;132(34):11856–7
doi: 10.1021/ja103843d
75   Li Y, Ma G, Peng S, Lu G, Li S. Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution. Appl Surf Sci 2008;254(21):6831–6
doi: 10.1016/j.apsusc.2008.04.075
76   Kado Y, Hahn R, Lee CY, Schmuki P. Strongly enhanced photocurrent response for Na doped Ta3N5-nano porous structure. Electrochem Commun 2012;17:67–70
doi: 10.1016/j.elecom.2012.01.028
77   Feng J, Cao D, Wang Z, Luo W, Wang J, Li Z, et al.Ge-mediated modification in Ta3N5 photoelectrodes with enhanced charge transport for solar water splitting. Chemistry 2014;20(49):16384–90
doi: 10.1002/chem.201402760
78   Ma SSK, Hisatomi T, Maeda K, Moriya Y, Domen K. Enhanced water oxidation on Ta3N5 photocatalysts by modification with alkaline metal salts. J Am Chem Soc 2012;134(49):19993–6
doi: 10.1021/ja3095747
79   Xie Y, Wang Y, Chen Z, Xu X. Role of oxygen defects on the photocatalytic properties of Mg-doped mesoporous Ta3N5. ChemSusChem 2016;9(12):1403–12
doi: 10.1002/cssc.201600193
80   Kado Y, Lee CY, Lee K, Müller J, Moll M, Spiecker E, et al.Enhanced water splitting activity of M-doped Ta3N5 (M= Na, K, Rb, Cs). Chem Commun 2012;48(69):8685–7
doi: 10.1039/c2cc33822j
81   Seo J, Takata T, Nakabayashi M, Hisatomi T, Shibata N, Minegishi T, et al.Mg-Zr cosubstituted Ta3N5 photoanode for lower-onset-potential solar-driven photoelectrochemical water splitting. J Am Chem Soc 2015;137(40):12780–3
doi: 10.1021/jacs.5b08329
82   Pan C, Takata T, Kumamoto K, Khine Ma SS, Ueda K, Minegishi T, et al.Band engineering of perovskite-type transition metal oxynitrides for photocatalytic overall water splitting. J Mater Chem A 2016;4(12):4544–52
doi: 10.1039/C5TA10612E
83   Xiong J, Han C, Li Z, Dou S. Effects of nanostructure on clean energy: Big solutions gained from small features. Sci Bull 2015;60(24):2083–90
doi: 10.1007/s11434-015-0972-z
84   Hisatomi T, Otani M, Nakajima K, Teramura K, Kako Y, Lu D, et al.Preparation of crystallized mesoporous Ta3N5 assisted by chemical vapor deposition of tetramethyl orthosilicate. Chem Mater 2010;22(13):3854–61
doi: 10.1021/cm903583f
85   Maeda K, Nishimura N, Domen K. A precursor route to prepare tantalum (V) nitride nanoparticles with enhanced photocatalytic activity for hydrogen evolution under visible light. Appl Catal A Gen 2009;370(1–2):88–92
doi: 10.1016/j.apcata.2009.09.024
86   Yuliati L, Yang JH, Wang X, Maeda K, Takata T, Antonietti M, et al.Highly active tantalum (V) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. J Mater Chem 2010;20(21):4295–8
doi: 10.1039/c0jm00341g
87   Tsang MY, Pridmore NE, Gillie LJ, Chou YH, Brydson R, Douthwaite RE. Enhanced photocatalytic hydrogen generation using polymorphic macroporous TaON. Adv Mater 2012;24(25):3406–9
doi: 10.1002/adma.201201193
88   John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 1987;58(23):2486–9
doi: 10.1103/PhysRevLett.58.2486
89   Chen JIL, von Freymann G, Choi SY, Kitaev V, Ozin GA. Amplified Photochemistry with slow photons. Adv Mater 2006;18(14):1915–9
doi: 10.1002/adma.200600588
90   Wang Z, Hou J, Yang C, Jiao S, Huang K, Zhu H. Hierarchical metastable γ-TaON hollow structures for efficient visible-light water splitting. Energy Environ Sci 2013;6(7):2134–44
doi: 10.1039/c3ee24370b
91   Fukasawa Y, Takanabe K, Shimojima A, Antonietti M, Domen K, Okubo T. Synthesis of ordered porous graphitic-C3N4 and regularly arranged Ta3N5 nanoparticles by using self-assembled silica nanospheres as a primary template. Chem Asian J 2011;6(1):103–9
doi: 10.1002/asia.201000523
92   Fu J, Skrabalak SE. Aerosol synthesis of shape-controlled template particles: A route to Ta3N5 nanoplates and octahedra as photocatalysts. J Mater Chem A 2016;4(21):8451–7
doi: 10.1039/C6TA01889K
93   Maeda K, Terashima H, Kase K, Higashi M, Tabata M, Domen K. Surface modification of TaON with monoclinic ZrO2 to produce a composite photocatalyst with enhanced hydrogen evolution activity under visible light. Bull Chem Soc Jpn 2008;81(8):927–37
doi: 10.1246/bcsj.81.927
94   Maeda K, Higashi M, Lu D, Abe R, Domen K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 2010;132(16):5858–68
doi: 10.1021/ja1009025
95   Ma SSK, Maeda K, Domen K. Modification of TaON with ZrO2 to improve photocatalytic hydrogen evolution activity under visible light: Influence of preparation conditions on activity. Catal Sci Technol 2012;2(4):818–23
doi: 10.1039/c2cy00499b
96   Yuliati L, Maeda K, Takata T, Domen K. Modification of tantalum (V) nitride with zirconium oxide for photocatalytic hydrogen production under visible light irradiation. In: Proceedings of the 2012 International Conference on Enabling Science and Nanotechnology ; 2012 Jan 5–7; Johor Bahru, Malaysia. Piscataway: IEEE; 2012. p. 1–2
doi: 10.1109/ESciNano.2012.6149672
97   Chen S, Qi Y, Ding Q, Li Z, Cui J, Zhang F, et al.Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation. J Catal 2016;339:77–83
doi: 10.1016/j.jcat.2016.03.024
98   Qi Y, Chen S, Li M, Ding Q, Li Z, Cui J, et al.Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2-evolving photocatalyst. Chem Sci 2017;8(1):437–43
doi: 10.1039/C6SC02750D
99   Li R, Han H, Zhang F, Wang D, Li C. Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO4. Energy Environ Sci 2014;7(4):1369–76
doi: 10.1039/C3EE43304H
100   Ma Y, Chong R, Zhang F, Xu Q, Shen S, Han H, et al.Synergetic effect of dual cocatalysts in photocatalytic H2 production on Pd-IrOx/TiO2: A new insight into dual cocatalyst location. Phys Chem Chem Phys 2014;16(33):17734–42
doi: 10.1039/C4CP02567A
101   Jiang Q, Li L, Bi J, Liang S, Liu M. Design and synthesis of TiO2 hollow spheres with spatially separated dual cocatalysts for efficient photocatalytic hydrogen production. Nanomaterials 2017;7(2):24
doi: 10.3390/nano7020024
102   Huang L, Wang X, Yang J, Liu G, Han J, Li C. Dual cocatalysts loaded type I CdS/ZnS core/shell nanocrystals as effective and stable photocatalysts for H2 evolution. J Phys Chem C 2013;117(22):11584–91
doi: 10.1021/jp400010z
103   Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014;8(7):7078–87
doi: 10.1021/nn5019945
104   Bi W, Li X, Zhang L, Jin T, Zhang L, Zhang Q, et al.Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat Commun 2015;6:8647
doi: 10.1038/ncomms9647
105   Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 2013;46(8):1900–9
doi: 10.1021/ar300227e
106   Maeda K, Abe R, Domen K. Role and function of ruthenium species as promoters with TaON-based photocatalysts for oxygen evolution in two-step water splitting under visible light. J Phys Chem C 2011;115(7):3057–64
doi: 10.1021/jp110025x
107   Maeda K, Teramura K, Lu D, Saito N, Inoue Y, Domen K. Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew Chem Int Ed 2006;118(46):7970–3
doi: 10.1002/ange.200602473
108   Maeda K, Teramura K, Lu D, Saito N, Inoue Y, Domen K. Roles of Rh/Cr2O3 (core/shell) nanoparticles photodeposited on visible-light-responsive (Ga1-xZnx)(N1-xOx) solid solutions in photocatalytic overall water splitting. J Phys Chem C 2007;111(20):7554–60
doi: 10.1021/jp071056j
109   Maeda K, Sakamoto N, Ikeda T, Ohtsuka H, Xiong A, Lu D, et al.Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light. Chemistry 2010;16(26):7750–9
doi: 10.1002/chem.201000616
110   Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, et al.Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes. J Phys Chem C 2009;113(23):10151–7
doi: 10.1021/jp901418u
111   Yagi M, Tomita E, Kuwabara T. Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation. J Electroanal Chem 2005;579(1):83–8
doi: 10.1016/j.jelechem.2005.01.030
112   Zhao Y, Hernandez-Pagan EA, Vargas-Barbosa NM, Dysart JL, Mallouk TE. A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity. J Phys Chem Lett 2011;2(5):402–6
doi: 10.1021/jz200051c
113   Nakagawa T, Bjorge NS, Murray RW. Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J Am Chem Soc 2009;131(43):15578–9
doi: 10.1021/ja9063298
114   Yang L, Luo S, Li Y, Xiao Y, Kang Q, Cai Q. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol 2010;44(19):7641–6
doi: 10.1021/es101711k
115   Bessekhouad Y, Robert D, Weber JV. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal Today 2005;101(3–4):315–21
doi: 10.1016/j.cattod.2005.03.038
116   Daskalaki VM, Antoniadou M, Li Puma G, Kondarides DI, Lianos P. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ Sci Technol 2010;44(19):7200–5
doi: 10.1021/es9038962
117   Zhang LJ, Li S, Liu BK, Wang DJ, Xie TF. Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal 2014;4(10):3724–9
doi: 10.1021/cs500794j
118   Liu X, Zhao L, Domen K, Takanabe K. Photocatalytic hydrogen production using visible-light-responsive Ta3N5 photocatalyst supported on monodisperse spherical SiO2 particulates. Mater Res Bull 2014;49:58–65
doi: 10.1016/j.materresbull.2013.08.069
119   Luo Y, Liu X, Tang X, Luo Y, Zeng Q, Deng X, et al.Gold nanoparticles embedded in Ta2O5/Ta3N5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution. J Mater Chem A 2014;2(36):14927–39
doi: 10.1039/C4TA02991G
120   Jang JS, Kim HG, Joshi UA, Jang JW, Lee JS. Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrogen Energy 2008;33(21):5975–80
doi: 10.1016/j.ijhydene.2008.07.105
121   Adhikari SP, Hood ZD, More KL, Ivanov I, Zhang L, Gross M, et al.Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3 composites. RSC Advances 2015;5(68):54998–5005
doi: 10.1039/C5RA06563A
122   Higashi M, Abe R, Ishikawa A, Takata T, Ohtani B, Domen K. Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ<500 nm). Chem Lett 2008;37(2):138–9
doi: 10.1246/cl.2008.138
123   Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, et al.Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 2010;26(12):9161–5
doi: 10.1021/la100722w
[1] Praewpilin Kangvansura, Ly May Chew, Chanapa Kongmark, Phatchada Santawaja, Holger Ruland, Wei Xia, Hans Schulz, Attera Worayingyong, Martin Muhler. Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation[J]. Engineering, 2017, 3(3): 385 -392 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.