Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (3) : 354 -364
Research |
Progress of Pharmaceutical Continuous Crystallization
Dejiang Zhang1,2,Shijie Xu1,2,Shichao Du1,2,Jingkang Wang1,2,Junbo Gong1,2()
1. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Chemical Engineering, Tianjin University, Tianjin 300072, China

Crystallization is an important unit operation in the pharmaceutical industry. At present, most pharmaceutical crystallization processes are performed in batches. However, due to product variability from batch to batch and to the low productivity of batch crystallization, continuous crystallization is gaining increasing attention. In the past few years, progress has been made to allow the products of continuous crystallization to meet different requirements. This review summarizes the progress in pharmaceutical continuous crystallization from a product engineering perspective. The advantages and disadvantages of different types of continuous crystallization are compared, with the main difference between the two main types of crystallizers being their difference in residence time distribution. Approaches that use continuous crystallization to meet different quality requirements are summarized. Continuous crystallization has advantages in terms of size and morphology control. However, it also has the problem of a process yield that may be lower than that of a batch process, especially in the production of chirality crystals. Finally, different control strategies are compared.

Keywords Continuous crystallization      Pharmaceutical      MSMPR      Tubular crystallizer      Control strategy     
Corresponding Authors: Junbo Gong   
Just Accepted Date: 19 June 2017   Issue Date: 30 June 2017
E-mail this article
E-mail Alert
Articles by authors
Dejiang Zhang
Shijie Xu
Shichao Du
Jingkang Wang
Junbo Gong
Cite this article:   
Dejiang Zhang,Shijie Xu,Shichao Du, et al. Progress of Pharmaceutical Continuous Crystallization[J]. Engineering, 2017, 3(3): 354 -364 .
URL:     OR
1   Childs SL, Chyall LJ, Dunlap JT, Smolenskaya VN, Stahly BC, Stahly GP. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J Am Chem Soc 2004;126(41):13335–42
doi: 10.1021/ja048114o
2   Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. J Pharm Sci 2006;95(3):499–516
doi: 10.1002/jps.20578
3   Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 2007;59(7):617–30
doi: 10.1016/j.addr.2007.05.011
4   Alvarez AJ, Myerson AS. Continuous plug flow crystallization of pharmaceutical compounds. Cryst Growth Des 2010;10(5):2219–28
doi: 10.1021/cg901496s
5   Sen M, Rogers A, Singh R, Chaudhury A, John J, Ierapetritou MG, et al.Flowsheet optimization of an integrated continuous purification-processing pharmaceutical manufacturing operation. Chem Eng Sci 2013;102(15):56–66
doi: 10.1016/j.ces.2013.07.035
6   Chen J, Sarma B, Evans JMB, Myerson AS. Pharmaceutical crystallization. Cryst Growth Des 2011;11(4):887–95
doi: 10.1021/cg101556s
7   Li J, Trout BL, Myerson AS. Multistage continuous mixed-suspension, mixed-product removal (MSMPR) crystallization with solids recycle. Org Process Res Dev 2016;20(2):510–6
doi: 10.1021/acs.oprd.5b00306
8   Leuenberger H. New trends in the production of pharmaceutical granules: Batch versus continuous processing. Eur J Pharm Biopharm 2001;52(3):289–96
doi: 10.1016/S0939-6411(01)00199-0
9   Anderson NG. Using continuous processes to increase production. Org Process Res Dev 2012;16(5):852–69
doi: 10.1021/op200347k
10   Schaber SD, Gerogiorgis DI, Ramachandran R, Evans JMB, Barton PI, Trout BL. Economic analysis of integrated continuous and batch pharmaceutical manufacturing: A case study. Ind Eng Chem Res 2011;50(17):10083–92
doi: 10.1021/ie2006752
11   Su Q, Nagy ZK, Rielly CD. Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: Modelling, design, and control. Chem Eng Process: Process Intens 2015;89:41–53
doi: 10.1016/j.cep.2015.01.001
12   Byrn S, Futran M, Thomas H, Jayjock E, Maron N, Meyer RF, et al.Achieving continuous manufacturing for final dosage formation: Challenges and how to meet them. J Pharm Sci 2015;104(3):792–802
doi: 10.1002/jps.24247
13   Ferguson S, Ortner F, Quon J, Peeva L, Livingston A, Trout BL, et al.Use of continuous MSMPR crystallization with integrated nanofiltration membrane recycle for enhanced yield and purity in API crystallization. Cryst Growth Des 2014;14(2):617–27
doi: 10.1021/cg401491y
14   Myerson AS, Krumme M, Nasr M, Thomas H, Braatz RD. Control systems engineering in continuous pharmaceutical manufacturing. J Pharm Sci 2015;104(3):832–9
doi: 10.1002/jps.24311
15   Alvarez AJ, Singh A, Myerson AS. Crystallization of cyclosporine in a multistage continuous MSMPR crystallizer. Cryst Growth Des 2011;11(10):4392–400
doi: 10.1021/cg200546g
16   Quon JL, Zhang H, Alvarez A, Evans J, Myerson AS, Trout BL. Continuous crystallization of aliskiren hemifumarate. Cryst Growth Des 2012;12(6):3036–44
doi: 10.1021/cg300253a
17   Zhang H, Quon J, Alvarez AJ, Evans J, Myerson AS, Trout B. Development of continuous anti-solvent/cooling crystallization process using cascaded mixed suspension, mixed product removal crystallizers. Org Process Res Dev 2012;16(5):915–24
doi: 10.1021/op2002886
18   Wong SY, Tatusko AP, Trout BL, Myerson AS. Development of continuous crystallization processes using a single-stage mixed-suspension, mixed-product removal crystallizer with recycle. Cryst Growth Des 2012;12(11):5701–7
doi: 10.1021/cg301221q
19   Wierzbowska B, Hutnik N, Piotrowski K, Matynia A. Continuous mass crystallization of vitamin C in L(+)-ascorbic acid?ethanol?water system: Size-independent growth kinetic model approach. Cryst Growth Des 2011;11(5):1557–65
doi: 10.1021/cg101521k
20   Mersmann A. Crystallization technology handbook. 2nd ed. New York: Marcel Dekker Inc.; 2001
doi: 10.1201/9780203908280
21   Wu C, Xie Y. Controlling phase and morphology of inorganic nanostructures originated from the internal crystal structure. Chem Commun 2009;(40):5943–57
doi: 10.1039/b910965j
22   Yang H, Sun C, Qiao S, Zou J, Liu G, Smith S, et al.Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008;453(7195):638–41
doi: 10.1038/nature06964
23   Variankaval N, Cote AS, Doherty MF. From form to function: Crystallization of active pharmaceutical ingredients. AIChE J 2008;54(7):1682–8
doi: 10.1002/aic.11555
24   Griffin DW, Mellichamp DA, Doherty MF. Reducing the mean size of API crystals by continuous manufacturing with product classification and recycle. Chem Eng Sci 2010;65(21):5770–80
doi: 10.1016/j.ces.2010.05.026
25   Yang Y, Song L, Zhang Y, Nagy ZK. Application of wet milling-based automated direct nucleation control in continuous cooling crystallization processes. Ind Eng Chem Res 2016;55(17):4987–96
doi: 10.1021/acs.iecr.5b04956
26   Yang Y, Song L, Gao T, Nagy ZK. Integrated upstream and downstream application of wet milling with continuous mixed suspension mixed product removal crystallization. Cryst Growth Des 2015;15(12):5879–85
doi: 10.1021/acs.cgd.5b01290
27   Su Q, Rielly CD, Powell KA, Nagy ZK. Mathematical modelling and experimental validation of a novel periodic flow crystallization using MSMPR crystallizers. AIChE J 2016;63(4):1313–27
doi: 10.1002/aic.15510
28   Powell KA, Saleemi AN, Rielly CD, Nagy ZK. Periodic steady-state flow crystallization of a pharmaceutical drug using MSMPR operation. Chem Eng Process: Process Intens 2015;97:195–212
doi: 10.1016/j.cep.2015.01.002
29   Vetter T, Burcham CL, Doherty MF. Regions of attainable particle sizes in continuous and batch crystallization processes. Chem Eng Sci 2014;106:167–80
doi: 10.1016/j.ces.2013.11.008
30   Vetter T, Burcham CL, Doherty MF. Designing robust crystallization processes in the presence of parameter uncertainty using attainable regions. Ind Eng Chem Res 2015;54(42):10350–63
doi: 10.1021/acs.iecr.5b00693
31   Power G, Hou G, Kamaraju VK, Morris G, Zhao Y, Glennon B. Design and optimization of a multistage continuous cooling mixed suspension, mixed product removal crystallizer. Chem Eng Sci 2015;133:125–39
doi: 10.1016/j.ces.2015.02.014
32   Yang Y, Nagy ZK. Advanced control approaches for combined cooling/antisolvent crystallization in continuous mixed suspension mixed product removal cascade crystallizers. Chem Eng Sci 2015;127:362–73
doi: 10.1016/j.ces.2015.01.060
33   Narducci O, Jones AG, Kougoulos E. Continuous crystallization of adipic acid with ultrasound. Chem Eng Sci 2011;66(6):1069–76
doi: 10.1016/j.ces.2010.12.008
34   Powell KA, Saleemi AN, Rielly CD, Nagy ZK. Monitoring continuous crystallization of paracetamol in the presence of an additive using an integrated PAT array and multivariate methods. Org Process Res Dev 2016;20(3):626–36
doi: 10.1021/acs.oprd.5b00373
35   Lakatos BG, Sapundzhiev TJ, Garside J. Stability and dynamics of isothermal CMSMPR crystallizers. Chem Eng Sci 2007;62(16):4348–64
doi: 10.1016/j.ces.2007.04.028
36   Kwon JSI, Nayhouse M, Christofides PD, Orkoulas G. Modeling and control of crystal shape in continuous protein crystallization. Chem Eng Sci 2014;107:47–57
doi: 10.1016/j.ces.2013.12.005
37   Borchert C, Nere N, Ramkrishna D, Voigt A, Sundmacher K. On the prediction of crystal shape distributions in a steady-state continuous crystallizer. Chem Eng Sci 2009;64(4):686–96
doi: 10.1016/j.ces.2008.05.009
38   Gerard A, Muhr H, Plasari E, Jacob D, Lefaucheur CE. Effect of calcium based additives on the sodium bicarbonate crystallization in a MSMPR reactor. Powder Technol 2014;255:134–40
doi: 10.1016/j.powtec.2013.08.009
39   Garg J, Arora SKS, Garg J. Spherical crystallization: An overview. Int J Pharm Technol 2014;4(1):1909–28.
40   Kovacic B, Vrecer F, Planinsek O. Spherical crystallization of drugs. Acta Pharm 2012;62(1):1–14
doi: 10.2478/v10007-012-0010-5
41   Tahara K, O’Mahony M, Myerson AS. Continuous spherical crystallization of albuterol sulfate with solvent recycle system. Cryst Growth Des 2015;15(10):5149–56
doi: 10.1021/acs.cgd.5b01159
42   Peña R, Nagy ZK. Process intensification through continuous spherical crystallization using a two-stage mixed suspension mixed product removal (MSMPR) system. Cryst Growth Des 2015;15(9):4225–36
doi: 10.1021/acs.cgd.5b00479
43   Lee AY, Erdemir D, Myerson AS. Crystal polymorphism in chemical process development. Annu Rev Chem Biomol Eng 2011;2:259–80
doi: 10.1146/annurev-chembioeng-061010-114224
44   Hermanto MW, Chiu MS, Braatz RD. Nonlinear model predictive control for the polymorphic transformation of L-glutamic acid crystals. AIChE J 2009;55(10):2631–45
doi: 10.1002/aic.11879
45   Yang X, Sarma B, Myerson AS. Polymorph control of micro/nano-sized mefenamic acid crystals on patterned self-assembled monolayer islands. Cryst Growth Des 2012;12(11):5521–8
doi: 10.1021/cg301092b
46   Lai TTC, Ferguson S, Palmer L, Trout BL, Myerson AS. Continuous crystallization and polymorph dynamics in the L-glutamic acid system. Org Process Res Dev 2014;18(11):1382–90
doi: 10.1021/op500171n
47   Lai TTC, Cornevin J, Ferguson S, Li N, Trout BL, Myerson AS. Control of polymorphism in continuous crystallization via mixed suspension mixed product removal systems cascade design. Cryst Growth Des 2015;15(7):3374–82
doi: 10.1021/acs.cgd.5b00466
48   Farmer TC, Carpenter CL, Doherty MF. Polymorph selection by continuous crystallization. AIChE J 2016;62(9):3505–14
doi: 10.1002/aic.15343
49   Powell KA, Bartolini G, Wittering KE, Saleemi AN, Wilson CC, Rielly CD, et al.Toward continuous crystallization of urea-barbituric acid: A polymorphic co-crystal system. Cryst Growth Des 2015;15(10):4821–36
doi: 10.1021/acs.cgd.5b00599
50   Lee T, Chen HR, Lin HY, Lee HL. Continuous co-crystallization as a separation technology: The study of 1:2 co-crystals of phenazine-vanillin. Cryst Growth Des 2012;12(12):5897–907
doi: 10.1021/cg300763t
51   Vetter T, Burcham CL, Doherty MF. Separation of conglomerate forming enantiomers using a novel continuous preferential crystallization process. AIChE J 2015;61(9):2810–23
doi: 10.1002/aic.14934
52   Lorenz H, Seidel-Morgenstern A. Processes to separate enantiomers. Angew Chem Int Ed 2014;53(5):1218–50
doi: 10.1002/anie.201302823
53   Qamar S, Peter Elsner M, Hussain I, Seidel-Morgenstern A. Seeding strategies and residence time characteristics of continuous preferential crystallization. Chem Eng Sci 2012;71:5–17
doi: 10.1016/j.ces.2011.12.030
54   Temmel E, Wloch S, Müller U, Grawe D, Eilers R, Lorenz H, et al.Separation of systems forming solid solutions using counter-current crystallization. Chem Eng Sci 2013;104:662–73
doi: 10.1016/j.ces.2013.09.054
55   Qamar S, Galan K, Peter Elsner M, Hussain I, Seidel-Morgenstern A. Theoretical investigation of simultaneous continuous preferential crystallization in a coupled mode. Chem Eng Sci 2013;98:25–39
doi: 10.1016/j.ces.2013.05.010
56   Chaaban JH, Dam-Johansen K, Skovby T, Kiil S. Separation of enantiomers by continuous preferential crystallization: Experimental realization using a coupled crystallizer configuration. Org Process Res Dev 2013;17(8):1010–20
doi: 10.1021/op400087g
57   Galan K, Eicke MJ, Elsner MP, Lorenz H, Seidel-Morgenstern A. Continuous preferential crystallization of chiral molecules in single and coupled mixed-suspension mixed-product-removal crystallizers. Cryst Growth Des 2015;15(4):1808–18
doi: 10.1021/cg501854g
58   Temmel E, Müller U, Grawe D, Eilers R, Lorenz H, Seidel-Morgenstern A. Equilibrium model of a continuous crystallization process for separation of substances exhibiting solid solutions. Chem Eng Technol 2012;35(6):980–5
doi: 10.1002/ceat.201200002
59   Rougeot C, Hein JE. Application of continuous preferential crystallization to efficiently access enantiopure chemicals. Org Process Res Dev 2015;19(12):1809–19
doi: 10.1021/acs.oprd.5b00141
60   Furuta M, Mukai K, Cork D, Mae K. Continuous crystallization using a sonicated tubular system for controlling particle size in an API manufacturing process. Chem Eng Process: Process Intens 2016;102:210–8
doi: 10.1016/j.cep.2016.02.002
61   Jiang M, Zhu Z, Jimenez E, Papageorgiou CD, Waetzig J, Hardy A, et al.Continuous-flow tubular crystallization in slugs spontaneously induced by hydrodynamics. Cryst Growth Des 2014;14(2):851–60
doi: 10.1021/cg401715e
62   Eder RJP, Radl S, Schmitt E, Innerhofer S, Maier M, Gruber-Woelfler H, et al.Continuously seeded, continuously operated tubular crystallizer for the production of active pharmaceutical ingredients. Cryst Growth Des 2010;10(5):2247–57
doi: 10.1021/cg9015788
63   Eder RJP, Schmitt EK, Grill J, Radl S, Gruber-Woelfler H, Khinast JG. Seed loading effects on the mean crystal size of acetylsalicylic acid in a continuous-flow crystallization device. Cryst Res Technol 2011;46(3):227–37
doi: 10.1002/crat.201000634
64   Majumder A, Nagy ZK. Fines removal in a continuous plug flow crystallizer by optimal spatial temperature profiles with controlled dissolution. AIChE J 2013;59(12):4582–94
doi: 10.1002/aic.14196
65   Reyhani MM, Parkinson GM. Source of nuclei in contact nucleation as revealed by crystallization of isomorphous alums. In: Botsaris GD, Toyokura K, editors Separation and purification by crystallization. Washington, DC: American Chemical Society; 1997. p. 28–35
doi: 10.1021/bk-1997-0667.ch003
66   Wong SY, Cui Y, Myerson AS. Contact secondary nucleation as a means of creating seeds for continuous tubular crystallizers. Cryst Growth Des 2013;13(6):2514–21
doi: 10.1021/cg4002303
67   Cui Y, Jaramillo JJ, Stelzer T, Myerson AS. Statistical design of experiment on contact secondary nucleation as a means of creating seed crystals for continuous tubular crystallizers. Org Process Res Dev 2015;19(9):1101–8
doi: 10.1021/op500229a
68   Hohmann L, Gorny R, Klaas O, Ahlert J, Wohlgemuth K, Kockmann N. Design of a continuous tubular cooling crystallizer for process development on lab-scale. Chem Eng Technol 2016;39(7):1268–80
doi: 10.1002/ceat.201600072
69   Ferguson S, Morris G, Hao H, Barrett M, Glennon B. In-situ monitoring and characterization of plug flow crystallizers. Chem Eng Sci, 2012;77:105–11
doi: 10.1016/j.ces.2012.02.013
70   Ridder BJ, Majumder A, Nagy ZK. Population balance model-based multiobjective optimization of a multisegment multiaddition (MSMA) continuous plug-flow antisolvent crystallizer. Ind Eng Chem Res 2014;53(11):4387–97
doi: 10.1021/ie402806n
71   Su Q, Benyahia B, Nagy ZK, Rielly CD. Mathematical modeling, design, and optimization of a multisegment multiaddition plug-flow crystallizer for antisolvent crystallizations. Org Process Res Dev 2015;19(12):1859–70
doi: 10.1021/acs.oprd.5b00110
72   Eder RJP, Schrank S, Besenhard MO, Roblegg E, Gruber-Woelfler H, Khinast JG. Continuous sonocrystallization of acetylsalicylic acid (ASA): Control of crystal size. Cryst Growth Des 2012;12(10):4733–8
doi: 10.1021/cg201567y
73   Dombrowski RD, Litster JD, Wagner NJ, He Y. Crystallization of alpha-lactose monohydrate in a drop-based microfluidic crystallizer. Chem Eng Sci 2007;62(17):4802–10
doi: 10.1016/j.ces.2007.05.033
74   Neugebauer P, Khinast JG. Continuous crystallization of proteins in a tubular plug-flow crystallizer. Cryst Growth Des 2015;15(3):1089–95
doi: 10.1021/cg501359h
75   Jiang M, Papageorgiou CD, Waetzig J, Hardy A, Langston M, Braatz RD. Indirect ultrasonication in continuous slug-flow crystallization. Cryst Growth Des 2015;15(5):2486–92
doi: 10.1021/acs.cgd.5b00263
76   Rossi D, Jamshidi R, Saffari N, Kuhn S, Gavriilidis A, Mazzei L. Continuous-flow sonocrystallization in droplet-based microfluidics. Cryst Growth Des 2015;15(11):5519–29
doi: 10.1021/acs.cgd.5b01153
77   McGlone T, Briggs NEB, Clark CA, Brown CJ, Sefcik J, Florence AJ. Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization. Org Process Res Dev 2015;19(9):1186–202
doi: 10.1021/acs.oprd.5b00225
78   Lawton S, Steele G, Shering P, Zhao L, Laird I, Ni XW. Continuous crystallization of pharmaceuticals using a continuous oscillatory baffled crystallizer. Org Process Res Dev 2009;13(6):1357–63
doi: 10.1021/op900237x
79   Brown CJ, Adelakun JA, Ni Xw. Characterization and modelling of antisolvent crystallization of salicylic acid in a continuous oscillatory baffled crystallizer. Chem Eng Process: Process Intens 2015;97:180–6
doi: 10.1016/j.cep.2015.04.012
80   Siddique H, Brown CJ, Houson I, Florence AJ. Establishment of a continuous sonocrystallization process for lactose in an oscillatory baffled crystallizer. Org Process Res Dev 2015;19(12):1871–81
doi: 10.1021/acs.oprd.5b00127
81   Sang-Il Kwon J, Nayhouse M, Orkoulas G, Christofides PD. Crystal shape and size control using a plug flow crystallization configuration. Chem Eng Sci 2014;119:30–9
doi: 10.1016/j.ces.2014.07.058
82   Cogoni G, de Souza BP, Frawley PJ. Particle size distribution and yield control in continuous plug flow crystallizers with recycle. Chem Eng Sci 2015;138:592–9
doi: 10.1016/j.ces.2015.08.041
83   Briggs NEB, Schacht U, Raval V, McGlone T, Sefcik J, Florence AJ. Seeded crystallization of β-L-glutamic acid in a continuous oscillatory baffled crystallizer. Org Process Res Dev 2015;19(12):1903–11
doi: 10.1021/acs.oprd.5b00206
84   Zhao L, Raval V, Briggs NEB, Bhardwaj RM, McGlone T, Oswald IDH, et al.From discovery to scale-up: α-lipoic acid: Nicotinamide co-crystals in a continuous oscillatory baffled crystalliser. CrystEngComm 2014;16(26):5769.–80
doi: 10.1039/C4CE00154K
85   Yang Y, Song L, Nagy ZK. Automated direct nucleation control in continuous mixed suspension mixed product removal cooling crystallization. Cryst Growth Des 2015;15(12):5839–48
doi: 10.1021/acs.cgd.5b01219
86   Besenhard MO, Neugebauer P, Ho CD, Khinast JG. Crystal size control in a continuous tubular crystallizer. Cryst Growth Des 2015;15(4):1683–91
doi: 10.1021/cg501637m
87   Yang Y, Nagy ZK. Combined cooling and antisolvent crystallization in continuous mixed suspension, mixed product removal cascade crystallizers: Steady-state and startup optimization. Ind Eng Chem Res 2015;54(21):5673–82
doi: 10.1021/ie5034254
88   Majumder A, Nagy ZK. Dynamic modeling of encrust formation and mitigation strategy in a continuous plug flow crystallizer. Cryst Growth Des 2015;15(3):1129–40
doi: 10.1021/cg501431c
89   Koswara A, Nagy ZK. Anti-fouling control of plug-flow crystallization via heating and cooling cycle. IFAC-PapersOnLine 2015;48(8):193–8
doi: 10.1016/j.ifacol.2015.08.180
90   Ferguson S, Morris G, Hao H, Barrett M, Glennon B. In-situ monitoring and characterization of plug flow crystallizers. Chem Eng Sci 2012;77:105–11
doi: 10.1016/j.ces.2012.02.013
91   Razavi SM, Callegari G, Drazer G, Cuitino AM. Toward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturing. Int J Pharm 2016;507(1–2):83–9
doi: 10.1016/j.ijpharm.2016.04.064
92   Tachtatzis C, Sheridan R, Michie C, Atkinson RC, Cleary A, Dziewierz J, et al.Image-based monitoring for early detection of fouling in crystallisation processes. Chem Eng Sci 2015;133:82–90
doi: 10.1016/j.ces.2015.01.038
93   Brown CJ, Ni XW. Determination of metastable zone width, mean particle size and detectable number density using video imaging in an oscillatory baffled crystallizer. CrystEngComm 2012;14(8):2944–9
doi: 10.1039/c2ce06628a
94   Brown CJ, Ni XW. Evaluation of growth kinetics of antisolvent crystallization of paracetamol in an oscillatory baffled crystallizer utilizing video imaging. Cryst Growth Des 2011;11(9):3994–4000
doi: 10.1021/cg200560b
95   Brown CJ, Ni X. Online evaluation of paracetamol antisolvent crystallization growth rate with video imaging in an oscillatory baffled crystallizer. Cryst Growth Des 2011;11(3):719–25
doi: 10.1021/cg1011988
[1] Zhuo Cheng, Lang Qin, Jonathan A. Fan, Liang-Shih Fan. New Insight into the Development of Oxygen Carrier Materials for Chemical Looping Systems[J]. Engineering, 2018, 4(3): 343 -351 .
[2] Jennifer A. Clark, Erik E. Santiso. Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective[J]. Engineering, 2018, 4(3): 336 -342 .
[3] Andrea Di Maria, Karel Van Acker. Turning Industrial Residues into Resources: An Environmental Impact Assessment of Goethite Valorization[J]. Engineering, 2018, 4(3): 421 -429 .
[4] Lance A. Davis. Falcon Heavy[J]. Engineering, 2018, 4(3): 300 .
[5] Augusta Maria Paci. A Research and Innovation Policy for Sustainable S&T: A Comment on the Essay ‘‘Exploring the Logic and Landscape of the Knowledge System”[J]. Engineering, 2018, 4(3): 306 -308 .
[6] Ning Duan. When Will Speed of Progress in Green Science and Technology Exceed that of Resource Exploitation and Pollutant Generation?[J]. Engineering, 2018, 4(3): 299 .
[7] Jian-guo Li, Kai Zhan. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment[J]. Engineering, 2018, 4(3): 381 -391 .
[8] Veena Sahajwalla. Green Processes: Transforming Waste into Valuable Resources[J]. Engineering, 2018, 4(3): 309 -310 .
[9] Junye Wang, Hualin Wang, Yi Fan. Techno-Economic Challenges of Fuel Cell Commercialization[J]. Engineering, 2018, 4(3): 352 -360 .
[10] Raymond RedCorn, Samira Fatemi, Abigail S. Engelberth. Comparing End-Use Potential for Industrial Food-Waste Sources[J]. Engineering, 2018, 4(3): 371 -380 .
[11] Ning Duan, Linhua Jiang, Fuyuan Xu, Ge Zhang. A Non-Contact Original-State Online Real-Time Monitoring Method for Complex Liquids in Industrial Processes[J]. Engineering, 2018, 4(3): 392 -397 .
[12] Keith E. Gubbins, Kai Gu, Liangliang Huang, Yun Long, J. Matthew Mansell, Erik E. Santiso, Kaihang Shi, Małgorzata Ś liwińska-Bartkowiak, Deepti Srivastava. Surface-Driven High-Pressure Processing[J]. Engineering, 2018, 4(3): 311 -320 .
[13] Steff Van Loy, Koen Binnemans, Tom Van Gerven. Mechanochemical-Assisted Leaching of Lamp Phosphors: A Green Engineering Approach for Rare-Earth Recovery[J]. Engineering, 2018, 4(3): 398 -405 .
[14] Robert S. Weber, Johnathan E. Holladay. Modularized Production of Value-Added Products and Fuels from Distributed Waste Carbon-Rich Feedstocks[J]. Engineering, 2018, 4(3): 330 -335 .
[15] Hualin Wang, Pengbo Fu, Jianping Li, Yuan Huang, Ying Zhao, Lai Jiang, Xiangchen Fang, Tao Yang, Zhaohui Huang, Cheng Huang. Separation-and-Recovery Technology for Organic Waste Liquid with a High Concentration of Inorganic Particles[J]. Engineering, 2018, 4(3): 406 -415 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.