Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (3) : 290 -298     https://doi.org/10.1016/J.ENG.2017.03.026
Research |
Membrane Engineering for Green Process Engineering
Francesca Macedonio1,2(),Enrico Drioli1,2,3,4
1. Institute on Membrane Technology (ITM–CNR), University of Calabria, Rende 87036, Italy
2. Department of Environmental and Chemical Engineering, University of Calabria, Rende 87036, Italy
3. Department of Energy Engineering, Collega of Engineering, Hanyang University, Seoul 133-791, Korea
4. Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract
Abstract  

Green process engineering, which is based on the principles of the process intensi?cation strategy, can provide an important contribution toward achieving industrial sustainable development. Green process engineering refers to innovative equipment and process methods that are expected to bring about substantial improvements in chemical and any other manufacturing and processing aspects. It includes decreasing production costs, equipment size, energy consumption, and waste generation, and improving remote control, information ?uxes, and process ?exibility. Membrane-based technology assists in the pursuit of these principles, and the potential of membrane operations has been widely recognized in the last few years. This work starts by presenting an overview of the membrane operations that are utilized in water treatment and in the production of energy and raw materials. Next, it describes the potential advantages of innovative membrane-based integrated systems. A case study on an integrated membrane system (IMS) for seawater desalination coupled with raw materials production is presented. The aim of this work is to show how membrane systems can contribute to the realization of the goals of zero liquid discharge (ZLD), total raw materials utilization, and low energy consumption.

Keywords Membrane engineering      Energy/water/raw materials production      Beyond seawater reverse osmosis     
Fund: 
Corresponding Authors: Francesca Macedonio   
Just Accepted Date: 15 June 2017   Issue Date: 30 June 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Francesca Macedonio
Enrico Drioli
Cite this article:   
Francesca Macedonio,Enrico Drioli. Membrane Engineering for Green Process Engineering[J]. Engineering, 2017, 3(3): 290 -298 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.03.026     OR     http://engineering.org.cn/EN/Y2017/V3/I3/290
References
1   Global Water Intelligence and International Desalination Association. IDA desalination yearbook 2016−2017 . Oxford: Media Analytics Ltd.; 2016.
2   Lee KP, Arnot TC, Mattia D.A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J Membrane Sci 2011;370(1–2):1–22
doi: 10.1016/j.memsci.2010.12.036
3   Gabriel S, Baschwitz A, Mathonnière G, Fizaine F, Eleouet T. Building future nuclear power fleets: The available uranium resources constraint. Resour Policy 2013;38(4):458–69
doi: 10.1016/j.resourpol.2013.06.008
4   Macedonio F, Ali A, Poerio T, El-Sayed E, Drioli E, Abdel-Jawad M. Direct contact membrane distillation for treatment of oilfield produced water. Sep Purif Technol 2014;126:69–81
doi: 10.1016/j.seppur.2014.02.004
5   Gude VG. Desalination and sustainability—An appraisal and current perspective. Water Res 2016;89:87–106
doi: 10.1016/j.watres.2015.11.012
6   Morillo J, Usero J, Rosado D, El Bakouri H, Riaza A, Bernaola FJ. Comparative study of brine management technologies for desalination plants. Desalination 2014;336:32–49
doi: 10.1016/j.desal.2013.12.038
7   von Medeazza GLM. “Direct” and socially-induced environmental impacts of desalination. Desalination 2005;185(1–3):57–70
doi: 10.1016/j.desal.2005.03.071
8   Fritzmann C, Löwenberg J, Wintgens T, Melin T. State-of-the-art of reverse osmosis desalination. Desalination 2007;216(1–3):1–76
doi: 10.1016/j.desal.2006.12.009
9   Lienhard JH, Thiel GP, Warsinger DM, Banchik LD. Low carbon desalination: Status and research, development, and demonstration needs, report of a workshop conducted at the Massachusetts Institute of Technology in association with the Global Clean Water Desalination Alliance. Cambridge: MIT Abdul Latif Jameel World Water and Food Security Lab; 2016 Nov.
10   Johnson J, Busch M. Engineering aspects of reverse osmosis module design. Desalin Water Treat 2010;15(1–3):236–48
doi: 10.5004/dwt.2010.1756
11   Zhu A, Rahardianto A, Christofides PD, Cohen Y. Reverse osmosis desalination with high permeability membranes—Cost optimization and research needs. Desalin Water Treat 2010;15(1–3):256–66
doi: 10.5004/dwt.2010.1763
12   Elimelech M, Phillip WA. The future of seawater desalination: Energy, technology, and the environment. Science 2011;333(6043):712–7
doi: 10.1126/science.1200488
13   Amy G, Ghaffour N, Li Z, Francis L, Linares RV, Missimer T, et al.. Membrane-based seawater desalination: Present and future prospects. Desalination 2017;401:16–21
doi: 10.1016/j.desal.2016.10.002
14   Voutchkov N. Considerations for selection of seawater filtration pretreatment system. Desalination 2010;261(3):354–64
doi: 10.1016/j.desal.2010.07.002
15   Villacorte LO, Tabatabai SAA, Anderson DM, Amy GL, Schippers JC, Kennedy MD. Seawater reverse osmosis desalination and (harmful) algal blooms. Desalination 2015;360:61–80
doi: 10.1016/j.desal.2015.01.007
16   Macedonio F, Drioli E, Gusev AA, Bardow A, Semiat R, Kurihara M. Efficient technologies for worldwide clean water supply. Chem Eng Process 2012;51:2–17
doi: 10.1016/j.cep.2011.09.011
17   Mathioulakis E, Belessiotis V, Delyannis E. Desalination by using alternative energy: Review and state-of-the-art. Desalination 2007;203(1–3):346–65
doi: 10.1016/j.desal.2006.03.531
18   Khayet M, Mengual JI, Matsuura T. Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation. J Membrane Sci 2005;252(1–2):101–13
doi: 10.1016/j.memsci.2004.11.022
19   Hassankiadeh NT, Cui Z, Kim JH, Shin DW, Sanguineti A, Arcella V, et al. .PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: Effect of PVDF molecular weight. J Membrane Sci 2014;471:237–46
doi: 10.1016/j.memsci.2014.07.060
20   El-Bourawi MS, Ding Z, Ma R, Khayet M. A framework for better understanding membrane distillation separation process. J Membrane Sci 2006;285(1–2):4–29
doi: 10.1016/j.memsci.2006.08.002
21   Khayet M, Matsuura T, Mengual JI. Porous hydrophobic/hydrophilic composite membranes: Estimation of the hydrophobic-layer thickness. J Membrane Sci 2005;266(1–2):68–79
doi: 10.1016/j.memsci.2005.05.012
22   Jin Z, Yang D, Zhang S, Jian X. Hydrophobic modification of poly (phthalazinone ether sulfone ketone) hollow fiber membrane for vacuum membrane distillation. J Membrane Sci 2008;310(1–2):20–7
doi: 10.1016/j.memsci.2007.10.021
23   Tong D, Wang X, Ali M, Lan CQ, Wang Y, Drioli E, et al.. Preparation of Hyflon AD60/PVDF composite hollow fiber membranes for vacuum membrane distillation. Sep Purif Technol 2016;157:1–8
doi: 10.1016/j.seppur.2015.11.026
24   McCutcheon JR, McGinnis RL, Elimelech M. Desalination by a novel ammonia-carbon dioxide forward osmosis process: Influence of draw and feed solution concentrations on process performance. J Membrane Sci 2006;278(1–2):114–23
doi: 10.1016/j.memsci.2005.10.048
25   Gray GT, McCutcheon JR, Elimelech M. Internal concentration polarization in forward osmosis: Role of membrane orientation. Desalination 2006;197(1–3):1–8
doi: 10.1016/j.desal.2006.02.003
26   Cath TY, Childress AE, Elimelech M. Forward osmosis: Principles, applications, and recent developments. J Membrane Sci 2006;281(1–2):70–87
doi: 10.1016/j.memsci.2006.05.048
27   Zhang S, Wang K, Chung TS, Chen H, Jean YC, Amy G. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. J Membrane Sci 2010;360(1–2):522–35
doi: 10.1016/j.memsci.2010.05.056
28   Chung TS, Luo L, Wan C, Cui Y, Amy G. What is next for forward osmosis (FO) and pressure retarded osmosis (PRO). Sep Purif Technol 2015;156(Part 2):856–60
doi: 10.1016/j.seppur.2015.10.063
29   Sukitpaneenit P, Chung TS. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environ Sci Technol 2012;46(13):7358–65
doi: 10.1021/es301559z
30   Zhang S, Chung TS. Minimizing the instant and accumulative effects of salt permeability to sustain ultrahigh osmotic power density. Environ Sci Technol 2013;47(17):10085–92
doi: 10.1021/es402690v
31   Sarp S, Li Z, Saththasivam J. Pressure retarded osmosis (PRO): Past experiences, current developments, and future prospects. Desalination 2016;389:2–14
doi: 10.1016/j.desal.2015.12.008
32   Kurihara, M, Sakai H, Tanioka A, Tomioka H. Role of pressure retarded osmosis (PRO) in the mega-ton project. Desalin Water Treat 2016;57(55):26518–28
doi: 10.1080/19443994.2016.1168582
33   Wan C, Chung TS. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed. J Membrane Sci 2015;479:148–58
doi: 10.1016/j.memsci.2014.12.036
34   Fernández-Torres MJ, Randall DG, Melamu R, von Blottnitz H. A comparative life cycle assessment of eutectic freeze crystallization and evaporative crystallization for the treatment of saline wastewater. Desalination 2012;306:17–23
doi: 10.1016/j.desal.2012.08.022
35   Randall DG, Nathoo J, Lewis AE. A case study for treating a reverse osmosis brine using eutectic freeze crystallization—Approaching a zero waste process. Desalination 2011;266(1–3):256–62
doi: 10.1016/j.desal.2010.08.034
36   Stover RL. Industrial and brackish water treatment with closed circuit reverse osmosis. Desalin Water Treat 2013; 51(4–6):1124–30
doi: 10.1080/19443994.2012.699341
37   Qiu T, Davies PA. Comparison of configurations for high-recovery inland desalination systems. Water 2012;4(3):690–706
doi: 10.3390/w4030690
38   Efraty A, Barak RN, Gal Z. Closed circuit desalination—A new low energy high recovery technology without energy recovery. Desalin Water Treat 2011; 31(1–3):95–101
doi: 10.5004/dwt.2011.2402
39   Juby G, Zacheis A, Shih W, Ravishanker P, Mortazavi B, Nusser MD. Evaluation and selection of available processes for a zero-liquid discharge system for the Perris, California, ground water basin. Desalination and water purification research and development program report. Denver: US Department of the Interior, Bureau of Reclamation; 2008 Apr. Report No.: 149.
40   Subramani A, Jacangelo JG. Treatment technologies for reverse osmosis concentrate volume minimization: A review. Sep Purif Technol 2014;122:472–89
doi: 10.1016/j.seppur.2013.12.004
41   Drewes JE, Cath TY, Xu P, Graydon J, Veil J, Snyder S. An integrated framework for treatment and management of produc ed water. In: RPSEA Unconventional Gas Project Review Meeting; 2009 Apr 14–15; Golden, Colorado, USA; 2009.
42   Sethi S, Walker S, Drewes J, Xu P. Existing and emerging concentrate minimization and disposal practices for membrane systems. Fla Water Resour J 2006;58:38–48.
43   Curcio E, Criscuoli A, Drioli E. Membrane crystallizers. Ind Eng Chem Res 2001;40(12):2679–84
doi: 10.1021/ie000906d
44   Di Profio G, Tucci S, Curcio E, Drioli E. Selective glycine polymorph crystallization by using microporous membranes. Cryst Growth Des 2007;7(3):526–30
doi: 10.1021/cg0605990
45   Drioli E, Fontananova E. Membrane materials for addressing energy and environmental challenges. Annu Rev Chem Biomol Eng 2012;3:395–420
doi: 10.1146/annurev-chembioeng-062011-081027
46   Drioli E, Curcio E, Criscuoli A, Di Profio G. Integrated system for recovery of CaCO3, NaCl and MgSO4·7H2O from nanofiltration retentate. J Membrane Sci 2004;239(1):27–38
doi: 10.1016/j.memsci.2003.09.028
47   Di Profio G, Tucci S, Curcio E, Drioli E. Selective glycine polymorph crystallization by using microporous membranes. Cryst Growth Des 2007;7(3): 526–30
doi: 10.1021/cg0605990
48   Drioli E, Di Profio G, Curcio E. Progresses in membrane crystallization. Curr Opin Chem Eng 2012;1(2):178–82
doi: 10.1016/j.coche.2012.03.005
49   Macedonio F, Curcio E, Drioli E. Integrated membrane systems for seawater desalination: Energetic and exergetic analysis, economic evaluation, experimental study. Desalination 2007;203(1–3):260–76
doi: 10.1016/j.desal.2006.02.021
50   Macedonio F, Drioli E. Pressure-driven membrane operations and membrane distillation technology integration for water purification. Desalination 2008;223(1–3):396–409
doi: 10.1016/j.desal.2007.01.200
51   Macedonio F, Drioli E, Curcio E, Di Profio G. Experimental and economical evaluation of a membrane crystallizer plant. Desalin Water Treat 2009;9(1–3):49–53
doi: 10.5004/dwt.2009.751
52   Macedonio F, Drioli E. Hydrophobic membranes for salts recovery from desalination plants. Desalin Water Treat 2010;18(1–3): 224–34
doi: 10.5004/dwt.2010.1775
53   Tun CM, Fane AG, Matheickal JT, Sheikholeslami R. Membrane distillation crystallization of concentrated salts—Flux and crystal formation. J Membrane Sci 2005;257(1–2):144–55
doi: 10.1016/j.memsci.2004.09.051
54   Drioli E, Macedonio F. Integrated membrane systems for desalination. In: Peinemann KV, Nunes SP, editors Membrane technology: Membranes for water treatment, volume 4. Hoboken: John Wiley & Sons, Inc.; 2010. p. 93–146
doi: 10.1002/9783527631407.ch4
55   Drioli E, Curcio E, Di Profio G, Macedonio F, Criscuoli A. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination—Energy, exergy and costs analysis. Chem Eng Res Des 2006;84(3):209–20
doi: 10.1205/cherd.05171
56   Judd S, Jefferson B. Membrane for industrial wastewater recovery and re-use. 1st ed. Oxford: Elsevier Science Ltd.; 2003.
57   Macedonio F, Brunetti A, Barbieri G, Drioli E. Membrane condenser as a new technology for water recovery from humidified “waste” gaseous streams. Ind Eng Chem Res 2013;52(3):1160–7
doi: 10.1021/ie203031b
58   Michels B, Adamczyk F, Koch J. Retrofit of a flue gas heat recovery system at the Mehrum power plant. An example of power plant lifetime evaluation in practice. In: Proceedings of the POWER-GEN Europe Conference; 2004 May25–27; Barcelona, Spain; 2004. p. 10–1.
59   Folkedahl BC, Weber GF, Collings ME. Water extraction from coal-fired power plant flue gas. Final report. Grand Forks: University of North Dakota; 2006 Jun. Cooperative Agreement No.: DE-FC26-03NT41907.
60   Ito A. Dehumidification of air by a hygroscopic liquid membrane supported on surface of a hydrophobic microporous membrane. J Membrane Sci 2000;175(1):35–42
doi: 10.1016/S0376-7388(00)00404-X
61   Sijbesma H, Nymeijer K, van Marwijk R, Heijboer R, Potreck J, Wessling M. Flue gas dehydration using polymer membranes. J Membrane Sci 2008;313(1–2):263–76
doi: 10.1016/j.memsci.2008.01.024
62   Zhang L, Zhu D, Deng X, Hua B. Thermodynamic modeling of a novel air dehumidification system. Energ Buildings 2005;37(3):279–86
doi: 10.1016/j.enbuild.2004.06.019
63   Drioli E, Santoro S, Simone S, Barbieri G, Brunetti A, Macedonio F,et al. .ECTFE membrane preparation for recovery of humidified gas streams using membrane condenser. React Funct Polym 2014;79:1–7
doi: 10.1016/j.reactfunctpolym.2014.03.003
64   Macedonio F, Cersosimo M, Brunetti A, Barbieri G, Drioli E. Water recovery from humidified waste gas streams: Quality control using membrane condenser technology. Chem Eng Process 2014;86:196–203
doi: 10.1016/j.cep.2014.08.008
65   Brunetti A, Santoro S, Macedonio F, Figoli A, Drioli E, Barbieri G. Waste gaseous streams: From environmental issue to source of water by using membrane condensers. Clean–Soil Air Water 2014;42(8):1145–53
doi: 10.1002/clen.201300104
66   Macedonio F, Brunetti A, Barbieri G, Drioli E. Membrane condenser configurations for water recovery from waste gases. Sep Purif Technol 2017;181:60–8
doi: 10.1016/j.seppur.2017.03.009
67   Drioli E, Criscuoli A, Macedonio F. Membrane-based desalination: An integrated approach. London: IWA Publishig; 2011.
68   Kurihara M, Hanakawa M. Mega-ton water system: Japanese national research and development project on seawater desalination and wastewater reclamation. Desalination 2013;308:131–7
doi: 10.1016/j.desal.2012.07.038
69   Kim S, Cho D, Lee MS, Oh BS, Kim JH, Kim IS. SEAHERO R&D program and key strategies for the scale-up of a seawater reverse osmosis (SWRO) system. Desalination 2009;238(1–3):1–9
doi: 10.1016/j.desal.2008.01.029
70   Kim S, Oh BS, Hwang MH, Hong S, Kim JH, Lee S, et al..An ambitious step to the future desalination technology: SEAHERO R&D program (2007–2012). Appl Water Sci 2011;1(1):11–7
doi: 10.1007/s13201-011-0003-4
Related
[1] Holger Krueger. Standardization for Additive Manufacturing in Aerospace[J]. Engineering, 2017, 3(5): 585 .
[2] Joe A. Sestak Jr.. High School Students from 157 Countries Convene to Address One of the 14 Grand Challenges for Engineering: Access to Clean Water[J]. Engineering, 2017, 3(5): 583 -584 .
[3] Lance A. Davis. Climate Agreement—Revisited[J]. Engineering, 2017, 3(5): 578 -579 .
[4] Ben A. Wender, M. Granger Morgan, K. John Holmes. Enhancing the Resilience of Electricity Systems[J]. Engineering, 2017, 3(5): 580 -582 .
[5] Jin-Xun Liu, Peng Wang, Wayne Xu, Emiel J. M. Hensen. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
[6] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[7] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[8] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[9] Raffaella Ocone. Reconciling “Micro” and “Macro” through Meso-Science[J]. Engineering, 2017, 3(3): 281 -282 .
[10] Baoning Zong, Bin Sun, Shibiao Cheng, Xuhong Mu, Keyong Yang, Junqi Zhao, Xiaoxin Zhang, Wei Wu. Green Production Technology of the Monomer of Nylon-6: Caprolactam[J]. Engineering, 2017, 3(3): 379 -384 .
[11] Pengcheng Xu, Yong Jin, Yi Cheng. Thermodynamic Analysis of the Gasification of Municipal Solid Waste[J]. Engineering, 2017, 3(3): 416 -422 .
[12] Lei Xu, Jinhui Peng, Hailong Bai, C. Srinivasakannan, Libo Zhang, Qingtian Wu, Zhaohui Han, Shenghui Guo, Shaohua Ju, Li Yang. Application of Microwave Melting for the Recovery of Tin Powder[J]. Engineering, 2017, 3(3): 423 -427 .
[13] Ee Teng Kho, Salina Jantarang, Zhaoke Zheng, Jason Scott, Rose Amal. Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO2 Methanation[J]. Engineering, 2017, 3(3): 393 -401 .
[14] Ke Dang, Tuo Wang, Chengcheng Li, Jijie Zhang, Shanshan Liu, Jinlong Gong. Improved Oxygen Evolution Kinetics and Surface States Passivation of Ni-Bi Co-Catalyst for a Hematite Photoanode[J]. Engineering, 2017, 3(3): 285 -289 .
[15] Mu Xiao, Songcan Wang, Supphasin Thaweesak, Bin Luo, Lianzhou Wang. Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation[J]. Engineering, 2017, 3(3): 365 -378 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
京ICP备11030251号-2

 Engineering