Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (5) : 631 -640
Research |
A Research Review on the Key Technologies of Intelligent Design for Customized Products
Shuyou Zhang,Jinghua Xu(),Huawei Gou,Jianrong Tan
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China

The development of technologies such as big data and cyber-physical systems (CPSs) has increased the demand for product design. Product digital design involves completing the product design process using advanced digital technologies such as geometry modeling, kinematic and dynamic simulation, multi-disciplinary coupling, virtual assembly, virtual reality (VR), multi-objective optimization (MOO), and human-computer interaction. The key technologies of intelligent design for customized products include: a description and analysis of customer requirements (CRs), product family design (PFD) for the customer base, configuration and modular design for customized products, variant design for customized products, and a knowledge push for product intelligent design. The development trends in intelligent design for customized products include big-data-driven intelligent design technology for customized products and customized design tools and applications. The proposed method is verified by the design of precision computer numerical control (CNC) machine tools.

Keywords Customized products      Customer requirements      Variant design      Intelligent design      Knowledge push     
Corresponding Authors: Jinghua Xu   
Just Accepted Date: 31 October 2017   Online First Date: 03 November 2017    Issue Date: 08 November 2017
E-mail this article
E-mail Alert
Articles by authors
Shuyou Zhang
Jinghua Xu
Huawei Gou
Jianrong Tan
Cite this article:   
Shuyou Zhang,Jinghua Xu,Huawei Gou, et al. A Research Review on the Key Technologies of Intelligent Design for Customized Products[J]. Engineering, 2017, 3(5): 631 -640 .
URL:     OR
1   Koren Y, Hu SJ, Gu P, Shpitalni M. Open-architecture products. CIRP Ann Manuf Technol 2013;62(2):719–29
doi: 10.1016/j.cirp.2013.06.001
2   Kutin A, Dolgov V, Sedykh M. Information links between product life cycles and production system management in designing of digital manufacturing. Procedia CIRP 2016;41:423–6
doi: 10.1016/j.procir.2015.12.126
3   Jackson K, Efthymiou K, Borton J. Digital manufacturing and flexible assembly technologies for reconfigurable aerospace production systems. Procedia CIRP 2016;52:274–9
doi: 10.1016/j.procir.2016.07.054
4   Tang G, Tseng MM. Incorporating customer indifference into the design of flexible options for customized products. CIRP Ann Manuf Technol 2015;64(1):427–30
doi: 10.1016/j.cirp.2015.04.108
5   Chinese Mechanical Engineering Society.Technology roadmap of Chinese mechanical engineering. 2nd ed. Beijing: Science and Technology of China Press; 2016. Chinese.
6   Carty A. An approach to multidisciplinary design, analysis & optimization for rapid conceptual design. In: Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization; 2002 Sep 4–6; Atlanta, GA, USA. Reston: The American Institute of Aeronautics and Astronautics, Inc; 2002
doi: 10.2514/6.2002-5438
7   Bae HR, Ando H, Nam S, Kim S, Ha C. Fatigue design load identification using engineering data analytics. J Mech Des 2015;137(1):011001
doi: 10.1115/1.4027849
8   Aquino Shluzas LM, Leifer LJ. The insight-value-perception (iVP) model for user-centered design. Technovation 2014;34(11):649–62
doi: 10.1016/j.technovation.2012.08.002
9   Carpo M. Breaking the curve: Big data and design. Artforum Int 2014;52(6):168–73.
10   Kano N, Seraku K, Takahashi F, Tsuji S. Attractive quality and must be quality. J Jpn Soc Qual Control 1984;14(2):147–56.
11   Hong Y, Feng K. Fuzzy cluster analysis on customer requirement elicitation pattern of QFD. In: Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation ; 2015 Jul 25–26; Tianjin, China. Amsterdam: Atlantis Press; 2016. p. 761–71. doi:
doi: 10.2991/978-94-6239-148-2_75
12   Jin J, Ji P, Gu R. Identifying comparative customer requirements from product online reviews for competitor analysis. Eng Appl Artif Intell 2016;49:61–73
doi: 10.1016/j.engappai.2015.12.005
13   Wang YM, Chin KS. A linear goal programming approach to determining the relative importance weights of customer requirements in quality function deployment. Inf Sci 2011;181(24):5523–33
doi: 10.1016/j.ins.2011.08.016
14   Juang YS, Lin SS, Kao HP. Design and implementation of a fuzzy inference system for supporting customer requirements. Expert Syst Appl 2007;32(3):868–78
doi: 10.1016/j.eswa.2006.01.052
15   Haug A. Emergence patterns for client design requirements. Des Stud 2015;39:48–69
doi: 10.1016/j.destud.2015.05.001
16   Wang Y , Tseng MM. Integrating comprehensive customer requirements into product design. CIRP Ann Manuf Technol 2011;60(1):175–8
doi: 10.1016/j.cirp.2011.03.091
17   Raharjo H, Xie M , Brombacher AC. A systematic methodology to deal with the dynamics of customer needs in quality function deployment. Expert Syst Appl 2011;38(4):3653–62
doi: 10.1016/j.eswa.2010.09.021
18   Elfvengren K, Kärkkäinen H, Torkkeli M, Tuominen M. A GDSS based approach for the assessment of customer needs in industrial markets. Int J Prod Econ 2004;89(3):275–92
doi: 10.1016/S0925-5273(02)00429-2
19   Çevik Onar S , Büyüközkan G, Öztayşi B, Kahraman C. A new hesitant fuzzy QFD approach: An application to computer workstation selection. Appl Soft Comput 2016;46:1–16
doi: 10.1016/j.asoc.2016.04.023
20   Osorio J, Romero D, Molina A. A modeling approach towards an extended product data model for sustainable mass-customized products. IFAC Proceedings Volumes 2013;46(9):579–83
doi: 10.3182/20130619-3-RU-3018.00368
21   Tseng MM, Jiao J, Merchant ME. Design for mass customization. CIRP Ann Manufact Technol 1996;45(1):153–6
doi: 10.1016/S0007-8506(07)63036-4
22   Levandowski CE, Jiao JR, Johannesson H. A two-stage model of adaptable product platform for engineering-to-order configuration design. J Eng Des 2015;26(7–9):220–35.
23   Ulrich J. Solving large configuration problems efficiently by clustering the ConBaCon model. In: Proceedings of the 13th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems; 2000 Jun 1–4; Cordoba, Spain. Berlin: Springer; 2000. p. 396–406
doi: 10.1007/3-540-45049-1_48
24   Stone RB, Wood KL, Crawford RH. A heuristic method for identifying modules for product architectures. Des Stud 2000;21(1):5–31
doi: 10.1016/S0142-694X(99)00003-4
25   Fujita K. Product variety optimization under modular architecture. Comput Aided Des 2002;34(12):953–65
doi: 10.1016/S0010-4485(01)00149-X
26   Carnduff TW, Goonetillake JS. Configuration management in evolutionary engineering design using versioning and integrity constraints. Adv Eng Softw 2004;35(3–4):161–77.
27   Jiao J, Zhang Y, Wang Y. A generic genetic algorithm for product family design. J Intell Manuf 2007;18(2):233–47
doi: 10.1007/s10845-007-0019-7
28   Tsai CY, Chiu CC. A case-based reasoning system for PCB principal process parameter identification. Expert Syst Appl 2007;32(4):1183–93
doi: 10.1016/j.eswa.2006.02.014
29   Yadav SR, Mishra N, Kumar V, Tiwari MK. A framework for designing robust supply chains considering product development issues. Int J Prod Res 2011;49(20):6065–88
doi: 10.1080/00207543.2010.524258
30   Schuh G, Rudolf S, Vogels T. Development of modular product architectures. Procedia CIRP 2014;20:120–5
doi: 10.1016/j.procir.2014.05.042
31   Pakkanen J, Juuti T, Lehtonen T. Brownfield process: A method for modular product family development aiming for product configuration. Des Stud 2016;45:210–41
doi: 10.1016/j.destud.2016.04.004
32   Chen KM, Liu RJ. Interface strategies in modular product innovation. Technovation 2005;25(7):771–82
doi: 10.1016/j.technovation.2004.01.013
33   Dahmus JB, Gonzalez-Zugasti JP, Otto KN. Modular product architecture. Des Stud 2001;22(5):409–24
doi: 10.1016/S0142-694X(01)00004-7
34   Dou R, Zong C, Li M. An interactive genetic algorithm with the interval arithmetic based on hesitation and its application to achieve customer collaborative product configuration design. Appl Soft Comput 2016;38:384–94
doi: 10.1016/j.asoc.2015.10.018
35   Du G, Jiao RJ, Chen M. Joint optimization of product family configuration and scaling design by Stackelberg game. Eur J Oper Res 2014;232(2):330–41
doi: 10.1016/j.ejor.2013.07.021
36   Ostrosi E, Fougères AJ, Ferney M. Fuzzy agents for product configuration in collaborative and distributed design process. Appl Soft Comput 2012;12(8):2091–105
doi: 10.1016/j.asoc.2012.03.005
37   Khalili-Araghi S, Kolarevic B. Development of a framework for dimensional customization system: A novel method for customer participation. J Build Eng 2016;5:231–8
doi: 10.1016/j.jobe.2016.01.001
38   Modrak V, Marton D, Bednar S. The influence of mass customization strategy on configuration complexity of assembly systems. Procedia CIRP 2015;33(2):538–43
doi: 10.1016/j.procir.2015.06.071
39   Modrak V, Bednar S. Entropy based versus combinatorial product configuration complexity in mass customized manufacturing. Procedia CIRP 2016;41:183–8
doi: 10.1016/j.procir.2015.12.100
40   Chandrasekaran B, Stone RB, McAdams DA. Developing design templates for product platform focused design. J Eng Des 2004;15(3):209–28
doi: 10.1080/09544820410001647078
41   Nidamarthi S, Mechler G, Karandikar H. A systematic method for designing profitable product families. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2003 Sep 2–6; Chicago, IL, USA. New York: ASME; 2003. p. 67–75
doi: 10.1115/DETC2003/DFM-48139
42   Snavely GL, Papalambros PY. Abstraction as a configuration design methodology. Adv Des Autom 1993;65(1):297–305.
43   Yu G, Yang Y, Liu A. Joint optimization of complex product variant design responding to customer requirement changes. J Intell Fuzzy Syst 2016;30(1):397–408
doi: 10.3233/IFS-151764
44   Gero JS. Computational models of innovative and creative design processes. Technol Forecast Soc Change 2000;64(2–3):183–96.
45   Hong T, Lee K, Kim S. Similarity comparison of mechanical parts to reuse existing designs. Comput Aided Des 2006;38(9):973–84
doi: 10.1016/j.cad.2006.05.004
46   Fowler JE. Variant design for mechanical artifacts: A state-of-the-art survey. Eng Comput 1996;12(1):1–15
doi: 10.1007/BF01200257
47   Chen CY, Liao GY, Lin KS. An attribute-based and object-oriented approach with system implementation for change impact analysis in variant product design. Comput Aided Des 2015;62:203–17
doi: 10.1016/j.cad.2014.11.006
48   Lo CH, Tseng KC, Chu CH. One-step QFD based 3D morphological charts for concept generation of product variant design. Expert Syst Appl 2010;37(11):7351–63
doi: 10.1016/j.eswa.2010.04.028
49   Modrak V, Marton D, Bednar S. Modeling and determining product variety for mass-customized manufacturing. Procedia CIRP 2014;23:258–63
doi: 10.1016/j.procir.2014.10.090
50   Wang A, Koc B, Nagi R. Complex assembly variant design in agile manufacturing. Part II: Assembly variant design methodology. IIE Trans 2005;37(1):17–33
doi: 10.1080/07408170590516773
51   Ketan HS, Adel MB, Abbasi GY. Developing variant feature model for design by feature. J Eng Des 2002;13(2):101–20
doi: 10.1080/09544820210129805
52   Prebil I, Zupan S, Lučič P. Adaptive and variant design of rotational connections. Eng Comput 1995;11(2):83–93
doi: 10.1007/BF01312202
53   Nayak RU, Chen W, Simpson TW. A variation-based method for product family design. Eng Optim 2002;34(1):65–81
doi: 10.1080/03052150210910
54   Jiang K, Gao X. 3D geometric constraint solving with conicoid. J Softw 2002;13(4):482–9
doi: 10.3969/j.issn.1006-8961.2001.06.010.
55   Lee YL. A 2D geometric constraint solver for parametric design using graph analysis and reduction. In: Proceedings of the 2nd International Workshop on Automated Deduction in Geometry; 1998 Aug 1–3; Beijing, China. Berlin: Springer; 1998. p. 258–74.
56   Younesi M, Roghanian E. A framework for sustainable product design: A hybrid fuzzy approach based on quality function deployment for environment. J Clean Prod 2015;108:385–94
doi: 10.1016/j.jclepro.2015.09.028
57   Pitiot P, Coudert T, Geneste L, Baron C. Hybridation of Bayesian networks and evolutionary algorithms for multi-objective optimization in an integrated product design and project management context. Eng Appl Artif Intell 2010;23(5):830–43
doi: 10.1016/j.engappai.2010.01.019
58   Costa CA, Luciano MA, Lima CP, Young RIM. Assessment of a product range model concept to support design reuse using rule based systems and case based reasoning. Adv Eng Inform 2012;26(2):292–305
doi: 10.1016/j.aei.2011.11.001
59   Winkelman P. A theoretical framework for an intelligent design catalogue. Eng Comput 2011;27(2):183–92
doi: 10.1007/s00366-010-0188-4
60   Hahm GJ, Yi MY, Lee JH, Suh HW. A personalized query expansion approach for engineering document retrieval. Adv Eng Inform 2014;28(4):344–59
doi: 10.1016/j.aei.2014.04.002
61   Akmal S, Shih LH, Batres R. Ontology-based similarity for product information retrieval. Comput Ind 2014;65(1):91–107
doi: 10.1016/j.compind.2013.07.011
62   Morariu C, Morariu O, Borangiu T, Sallez Y. Formalized information representation for intelligent products in service-oriented manufacturing. IFAC Proceedings Volumes 2013;46(7):318–23
doi: 10.3182/20130522-3-BR-4036.00017
63   Li X, Zhu Z, Pan X. Knowledge cultivating for intelligent decision making in small & middle businesses. Procedia Comput Sci 2010;1(1):2479–88
doi: 10.1016/j.procs.2010.04.280
64   Diego-Mas JA, Alcaide-Marzal J. Single users’ affective responses models for product form design. Int J Ind Ergon 2016;53:102–14
doi: 10.1016/j.ergon.2015.11.005
65   Tran T, Park JY. Development of a novel set of criteria to select methodology for designing product service systems. J Comput Design Eng 2016;3(2):112–20
doi: 10.1016/j.jcde.2015.10.001
66   Kuo TC, Smith S, Smith GC, Huang SH. A predictive product attribute driven eco-design process using depth-first search. J Clean Prod 2016;112 (Pt 4):3201–10.
67   Andriankaja H, Boucher X, Medini K, Vaillant H. A framework to design integrated product-service systems based on the extended functional analysis approach. Procedia CIRP 2016;47:323–8
doi: 10.1016/j.procir.2016.03.080
68   Muto K, Kimita K, Tanaka H, Numata E, Hosono S, Izukura S, et al.A task management method for product service systems design. Procedia CIRP 2016;47:537–42
doi: 10.1016/j.procir.2016.03.053
69   Ostrosi E, Fougères AJ, Ferney M, Klein D. Distributed fuzzy product configuration using a multi-agent approach. IFAC Proceedings Volumes 2009;42(4):52–7
doi: 10.3182/20090603-3-RU-2001.0430
70   Chan KY, Kwong CK, Dillon TS, Fung KY. An intelligent fuzzy regression approach for affective product design that captures nonlinearity and fuzziness. J Eng Des 2011;22(8):523–42
doi: 10.1080/09544820903550924
71   Zhang S, Xu J. Acquisition and active navigation of knowledge particles throughout product variation design process. Chin J Mech Eng 2009;22(3):395–402
doi: 10.3901/CJME.2009.03.395
72   Zhang S, Ren B, Gao Z. Feedback decoupling technology of fuzzy configuration based on generalized mapping for complex equipment. Adv Sci Lett 2011;4(8–10):2828–34.
73   Xu J, Chen X, Zhang S, Chen Q, Gou H, Tan J. Thermal design of large plate-fin heat exchanger for cryogenic air separation unit based on multiple dynamic equilibriums. Appl Therm Eng 2017;113:774–90
doi: 10.1016/j.applthermaleng.2016.10.177
74   Xu J, Zhang S, Tan J, Liu X. Non-redundant tool trajectory generation for surface finish machining based on geodesic curvature matching. Int J Adv Manuf Technol 2012;62(9–12):1169–78.
75   Xu J, Zhang S, Tan J, Sheng H. Interruption performance design of variable freedom mechanism triggered by electro-mechanical-magnetic coupling. J Mech Eng Sci 2017;231(18):3330–41
doi: 10.1177/0954406216646136
76   Xu J, Zhang S, Zhao Z, Lin X. Metamorphic manipulating mechanism design for MCCB using index reduced iteration. Chin J Mech Eng 2013;26(2):232–41
doi: 10.3901/CJME.2013.02.232
77   Xu J, Zhang S, Tan J, Sa R. Collisionless tool orientation smoothing above blade stream surface using NURBS envelope. J Zhejiang Univ Sci A 2013;14(3):187–97
doi: 10.1631/jzus.A1200160
78   Xu J, Zhang S, Tan J, Zhao Z. Multi-actuated mechanism design considering structure flexibility using correlated performance reinforcing. J Zhejiang Univ Sci A 2015;16(11):864–73
doi: 10.1631/jzus.A1500003
79   Sa R, Zhang S, Xu J. Transmission system accuracy optimum allocation for multi-axis machine tools scheme design. J Mech Eng Sci 2013;227(12):2762–79
doi: 10.1177/0954406213479723
80   Luo S, Xu J, Zhang S. Decompose image into meaningful regions based on contour detector and watershed algorithm. J Intell Fuzzy Syst 2017;32(6):4259– 71
doi: 10.3233/JIFS-16653
81   Luo S, Zhou H, Xu J, Zhang S. Matching images based on consistency graph and region adjacency graphs. Signal Image Video Process 2017;11(3):501–8
doi: 10.1007/s11760-016-0987-1
No related articles found!
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2