Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (4) : 467 -476     DOI: 10.1016/J.ENG.2017.04.012
Research |
Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts
Jin-Xun Liu1,Peng Wang1,2,Wayne Xu2,Emiel J. M. Hensen1()
1. Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
2. National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
Abstract
Abstract  

Fischer-Tropsch synthesis (FTS) is an increasingly important approach for producing liquid fuels and chemicals via syngas—that is, synthesis gas, a mixture of carbon monoxide and hydrogen—generated from coal, natural gas, or biomass. In FTS, dispersed transition metal nanoparticles are used to catalyze the reactions underlying the formation of carbon-carbon bonds. Catalytic activity and selectivity are strongly correlated with the electronic and geometric structure of the nanoparticles, which depend on the particle size, morphology, and crystallographic phase of the nanoparticles. In this article, we review recent works dealing with the aspects of bulk and surface sensitivity of the FTS reaction. Understanding the different catalytic behavior in more detail as a function of these parameters may guide the design of more active, selective, and stable FTS catalysts.

Keywords Fischer-Tropsch synthesis      Iron,cobalt and ruthenium carbides      Size effect      Crystal structure     
Fund: 
Corresponding Authors: Emiel J. M. Hensen   
Just Accepted Date: 14 August 2017   Issue Date: 13 September 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin-Xun Liu
Peng Wang
Wayne Xu
Emiel J. M. Hensen
Cite this article:   
Jin-Xun Liu,Peng Wang,Wayne Xu, et al. Particle Size and Crystal Phase Effects in Fischer-Tropsch Catalysts[J]. Engineering, 2017, 3(4): 467 -476 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.04.012     OR     http://engineering.org.cn/EN/Y2017/V3/I4/467
References
1   Schulz H. Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A Gen 1999;186(1–2):3–12
doi: 10.1016/S0926-860X(99)00160-X
2   Baliban RC, Elia JA, Weekman V, Floudas CA. Process synthesis of hybrid coal, biomass, and natural gas to liquids via Fischer–Tropsch synthesis, ZSM-5 catalytic conversion, methanol synthesis, methanol-to-gasoline, and methanol-to-olefins/distillate technologies. Comput Chem Eng 2012;47:29–56
doi: 10.1016/j.compchemeng.2012.06.032
3   Fischer F, Tropsch H. The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennstoff Chem 1923;4:276–85.
4   Filot IAW, van Santen RA, Hensen EJM. The optimally performing Fischer–Tropsch catalyst. Angew Chem 2014;126(47):12960–4. German
doi: 10.1002/ange.201406521
5   Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. Towards the computational design of solid catalysts. Nat Chem 2009;1(1):37–46
doi: 10.1038/nchem.121
6   Zhou K, Li Y. Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed 2012;51(3):602–13
doi: 10.1002/anie.201102619
7   Den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Frøseth V, Holmen A, et al.On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J Am Chem Soc 2009;131(20):7197–203
doi: 10.1021/ja901006x
8   Fu Q, Li WX, Yao Y, Liu H, Su HY, Ma D, et al.Interface-confined ferrous centers for catalytic oxidation. Science 2010;328(5982):1141–4
doi: 10.1126/science.1188267
9   Huo CF, Wu BS, Gao P, Yang Y, Li YW, Jiao H. The mechanism of potassium promoter: Enhancing the stability of active surfaces. Angew Chem Int Ed 2011;50(32):7403–6
doi: 10.1002/anie.201007484
10   Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH. Fischer–Tropsch synthesis: Support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A Gen 2002;233(1–2):263–81
doi: 10.1016/S0926-860X(02)00195-3
11   Van Santen RA. Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 2009;42(1):57–66
doi: 10.1021/ar800022m
12   Torres Galvis HM, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP. Iron particle size effects for direct production of lower olefins from synthesis gas. J Am Chem Soc 2012;134(39):16207–15
doi: 10.1021/ja304958u
13   Enger BC, Holmen A. Nickel and Fischer–Tropsch synthesis. Catal Rev 2012;54(4):437–88
doi: 10.1080/01614940.2012.670088
14   Valden M. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998;281(5383):1647–50
doi: 10.1126/science.281.5383.1647
15   Bezemer GL, Bitter JH, Kuipers HP, Oosterbeek H, Holewijn JE, Xu X, et al.Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 2006;128(12):3956–64
doi: 10.1021/ja058282w
16   Carballo JMG, Yang J, Holmen A, García-Rodríguez S, Rojas S, Ojeda M, et al.Catalytic effects of ruthenium particle size on the Fischer–Tropsch synthesis. J Catal 2011;284(1):102–8
doi: 10.1016/j.jcat.2011.09.008
17   Kellner CS, Bell AT. Effects of dispersion on the activity and selectivity of alumina-supported ruthenium catalysts for carbon monoxide hydrogenation. J Catal 1982;75(2):251–61
doi: 10.1016/0021-9517(82)90207-X
18   Iglesia E. Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A Gen 1997;161(1–2):59–78
doi: 10.1016/S0926-860X(97)00186-5
19   Wang Z, Skiles S, Yang F, Yan Z, Goodman DW. Particle size effects in Fischer–Tropsch synthesis by cobalt. Catal Today 2012;181(1):75–81
doi: 10.1016/j.cattod.2011.06.021
20   Prieto G, Martínez A, Concepción P, Moreno-Tost R. Cobalt particle size effects in Fischer–Tropsch synthesis: Structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. J Catal 2009;266(1):129–44
doi: 10.1016/j.jcat.2009.06.001
21   Herranz T, Deng X, Cabot A, Guo J, Salmeron M. Influence of the cobalt particle size in the CO hydrogenation reaction studied by in situ X-ray absorption spectroscopy. J Phys Chem B 2009;113(31):10721–7
doi: 10.1021/jp901602s
22   Tuxen A, Carenco S, Chintapalli M, Chuang CH, Escudero C, Pach E, et al.Size-dependent dissociation of carbon monoxide on cobalt nanoparticles. J Am Chem Soc 2013;135(6):2273–8
doi: 10.1021/ja3105889
23   Yang J, Tveten EZ, Chen D, Holmen A. Understanding the effect of cobalt particle size on Fischer–Tropsch synthesis: Surface species and mechanistic studies by SSITKA and kinetic isotope effect. Langmuir 2010;26(21):16558–67
doi: 10.1021/la101555u
24   Borg Ø, Dietzel PD, Spjelkavik AI, Tveten EZ, Walmsley JC, Diplas S, et al.Fischer–Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution. J Catal 2008;259(2):161–4
doi: 10.1016/j.jcat.2008.08.017
25   Rane S, Borg Ø, Rytter E, Holmen A. Relation between hydrocarbon selectivity and cobalt particle size for alumina supported cobalt Fischer–Tropsch catalysts. Appl Catal A Gen 2012;437–8:10–7
doi: 10.1016/j.apcata.2012.06.005
26   Melaet G, Lindeman AE, Somorjai GA. Cobalt particle size effects in the Fischer–Tropsch synthesis and in the hydrogenation of CO2 studied with nanoparticle model catalysts on silica. Top Catal 2014;57(6–9):500–7
doi: 10.1007/s11244-013-0206-z
27   Dalla Betta RA, Piken AG, Shelef M. Heterogeneous methanation: Initial rate of CO hydrogenation on supported ruthenium and nickel. J Catal 1974;35(1):54–60
doi: 10.1016/0021-9517(74)90182-1
28   Iglesia E, Soled SL, Fiato RA. Fischer–Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal 1992;137(1):212–24
doi: 10.1016/0021-9517(92)90150-G
29   Smith KJ, Everson RC. Fischer–Tropsch reaction studies with supported ruthenium catalysts: II. Effects of oxidative pretreatment at elevated temperatures. J Catal 1986;99(2):349–57
doi: 10.1016/0021-9517(86)90360-X
30   Kang J, Zhang S, Zhang Q, Wang Y. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel. Angew Chem 2009;121(14):2603–6. German
doi: 10.1002/ange.200805715
31   Xiao C, Cai Z, Wang T, Kou Y, Yan N. Aqueous-phase Fischer–Tropsch synthesis with a ruthenium nanocluster catalyst. Angew Chem 2008;120(4):758–61. German
doi: 10.1002/ange.200703481
32   Quek XY, Guan Y, van Santen RA, Hensen EJ. Unprecedented oxygenate selectivity in aqueous-phase Fischer–Tropsch synthesis by ruthenium nanoparticles. ChemCatChem 2011;3(11):1735–8
doi: 10.1002/cctc.201100219
33   Quek XY, Pestman R, van Santen RA, Hensen EJ. Structure sensitivity in the ruthenium nanoparticle catalyzed aqueous-phase Fischer–Tropsch reaction. Catal Sci Technol 2014;4(10):3510–23
doi: 10.1039/C4CY00709C
34   Mabaso EI, van Steen E, Claeys M. Fischer–Tropsch synthesis on supported iron crystallites of different size. In: Proceedings of the DGMK/SCI-Conference "Synthesis Gas Chemistry”; 2006 Oct 4–6; Dresden, Germany. 2006. p. 93–100.
35   Liu Y, Chen JF, Zhang Y. The effect of pore size or iron particle size on the formation of light olefins in Fischer–Tropsch synthesis. RSC Advances 2015;5(37):29002–7
doi: 10.1039/C5RA02319J
36   Park JY, Lee YJ, Khanna PK, Jun KW, Bae JW, Kim YH. Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: Effect of particle size of iron oxide. J Mol Catal Chem 2010;323(1–2):84–90
doi: 10.1016/j.molcata.2010.03.025
37   Sadeqzadeh M, Karaca H, Safonova O, Fongarland P, Chambrey S, Roussel P, et al.Identification of the active species in the working alumina-supported cobalt catalyst under various conditions of Fischer–Tropsch synthesis. Catal Today 2011;164(1):62–7
doi: 10.1016/j.cattod.2010.12.035
38   Mou X, Zhang B, Li Y, Yao L, Wei X, Su DS, et al.Rod-shaped Fe2O3 as an efficient catalyst for the selective reduction of nitrogen oxide by ammonia. Angew Chem Int Ed 2012;51(12):2989–93
doi: 10.1002/anie.201107113
39   Liu J, Su H, Sun D, Zhang B, Li W. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC. J Am Chem Soc 2013;135(44):16284–7
doi: 10.1021/ja408521w
40   Kusada K, Kobayashi H, Yamamoto T, Matsumura S, Sumi N, Sato K, et al.Discovery of face-centered cubic ruthenium nanoparticles: Facile size-controlled synthesis using the chemical reduction method. J Am Chem Soc 2013;135(15):5493–6
doi: 10.1021/ja311261s
41   Jin H, Lee KW, Khi NT, An H, Park J, Baik H, et al.Rational synthesis of heterostructured M/Pt (M= Ru or Rh) octahedral nanoboxes and octapods and their structure-dependent electrochemical activity toward the oxygen evolution reaction. Small 2015;11(35):4462–8
doi: 10.1002/smll.201500567
42   Gu J, Guo Y, Jiang Y, Zhu W, Xu Y, Zhao Z, et al.Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity. J Phys Chem C 2015;119(31):17697–706
doi: 10.1021/acs.jpcc.5b04587
43   Liu J, Li W. Theoretical study of crystal phase effect in heterogeneous catalysis. WIREs Comput Mol Sci 2016;6(5):571–83
doi: 10.1002/wcms.1267
44   Ducreux O, Lynch J, Rebours B, Roy M, Chaumette P. In situ characterisation of cobalt based Fischer-Tropsch catalysts: A new approach to the active phase. In: Fornasiero P, Cargnello M, editors Morphological, compositional, and shape control of materials for catalysis. Amsterdam: Elsevier; 1998. p. 125–30
doi: 10.1016/S0167-2991(98)80419-9
45   Ducreux O, Rebours B, Lynch J, Roy-Auberger M, Bazin D. Microstructure of supported cobalt Fischer-Tropsch catalysts. Oil Gas Sci Technol 2009;64(1):49–62
doi: 10.2516/ogst:2008039
46   Guo Y, Liu X, Azmat MU, Xu W, Ren J, Wang Y, et al.Hydrogen production by aqueous-phase reforming of glycerol over Ni-B catalysts. Int J Hydrogen Energy 2012;37(1):227–34
doi: 10.1016/j.ijhydene.2011.09.111
47   Song C, Sakata O, Kumara LSR, Kohara S, Yang A, Kusada K, et al.Size dependence of structural parameters in FCC and HCP Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data. Sci Rep 2016;6(1):31400
doi: 10.1038/srep31400
48   Ma H, Na C. Isokinetic temperature and size-controlled activation of ruthenium-catalyzed ammonia borane hydrolysis. ACS Catal 2015;5(3):1726–35
doi: 10.1021/cs5019524
49   Fan Z, Zhang H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem Soc Rev 2016;45(1):63–82
doi: 10.1039/C5CS00467E
50   De la Peña O’Shea VA, Homs N, Fierro JLG, Ramírez de la Piscina P. Structural changes and activation treatment in a Co/SiO2 catalyst for Fischer–Tropsch synthesis. Catal Today 2006;114(4):422–7
doi: 10.1016/j.cattod.2006.02.065
51   Enache DI, Rebours B, Roy-Auberger M, Revel R. In situ XRD study of the influence of thermal treatment on the characteristics and the catalytic properties of cobalt-based Fischer–Tropsch catalysts. J Catal 2002;205(2):346–53
doi: 10.1006/jcat.2001.3462
52   Gnanamani MK, Jacobs G, Shafer WD, Davis BH. Fischer–Tropsch synthesis: Activity of metallic phases of cobalt supported on silica. Catal Today 2013;215:13–7
doi: 10.1016/j.cattod.2013.03.004
53   Zhong L, Yu F, An Y, Zhao Y, Sun Y, Li Z, et al.Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 2016;538(7623):84–7
doi: 10.1038/nature19786
54   Liu J, Zhang B, Chen P, Su H, Li W. CO dissociation on face-centered cubic and hexagonal close-packed nickel catalysts: A first-principles study. J Phys Chem C 2016;120(43):24895–903
doi: 10.1021/acs.jpcc.6b08742
55   Pei Y, Liu J, Zhao Y, Ding Y, Liu T, Dong W, et al.High alcohols synthesis via Fischer–Tropsch reaction at cobalt metal/carbide interface. ACS Catal 2015;5(6):3620–4
doi: 10.1021/acscatal.5b00791
56   Dong W, Liu J, Zhu H, Ding Y, Pei Y, Liu J, et al.Co–Co2C and Co–Co2C/AC catalysts for hydroformylation of 1-hexene under low pressure: Experimental and theoretical studies. J Phys Chem C 2014;118(33):19114–22
doi: 10.1021/jp504215y
57   Hansen M, Anderko K. Constitution of binary alloys. 1st ed. Elliot RP, editor. New York: McGraw-Hill Book Company; 1965.
58   Kitakami O, Sato H, Shimada Y, Sato F, Tanaka M. Size effect on the crystal phase of cobalt fine particles. Phys Rev B 1997;56(21):13849–54
doi: 10.1103/PhysRevB.56.13849
59   Fischer N, van Steen E, Claeys M. Preparation of supported nano-sized cobalt oxide and FCC cobalt crystallites. Catal Today 2011;171(1):174–9
doi: 10.1016/j.cattod.2011.03.018
60   Braconnier L, Landrivon E, Clémençon I, Legens C, Diehl F, Schuurman Y. How does activation affect the cobalt crystallographic structure? An in situ XRD and magnetic study. Catal Today 2013;215:18–23
doi: 10.1016/j.cattod.2013.02.021
61   Prieto G, Concepción P, Murciano R, Martínez A. The impact of pre-reduction thermal history on the metal surface topology and site-catalytic activity of Co/SiO2 Fischer–Tropsch catalysts. J Catal 2013;302:37–48
doi: 10.1016/j.jcat.2013.02.022
62   Karaca H, Safonova OV, Chambrey S, Fongarland P, Roussel P, Griboval-Constant A, et al.Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer–Tropsch synthesis. J Catal 2011;277(1):14–26
doi: 10.1016/j.jcat.2010.10.007
63   Wulff G. Zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen. Zeitschrift Kristallographie Mineralogie 1901;34(1–6):449–530. German
doi: 10.1524/zkri.1901.34.1.449
64   Ding Y, Zhu H, Wang T, Jiao G, Lu Y. Process for directly producing mixed linear α-alcohols having 1 to 18 carbon atoms from synthesis gas. United States patent US 7468396. 2008 Dec 23.
65   Ding Y, Zhu H, Wang T, Jiao G, Lu Y. Activated carbon supported cobalt based catalyst for directly converting of synthesis gas to mixed linearα-alcohols and paraffins. United States patent US 7670985. 2010 Mar 2.
66   Volkova GG, Yurieva TM, Plyasova LM, Naumova MI, Zaikovskii V. Role of the Cu–Co alloy and cobalt carbide in higher alcohol synthesis. J Mol Catal Chem 2000;158(1):389–93
doi: 10.1016/S1381-1169(00)00110-2
67   Lebarbier VM, Mei D, Kim DH, Andersen A, Male JL, Holladay JE, et al.Effects of La2O3 on the mixed higher alcohols synthesis from syngas over Co catalysts: A combined theoretical and experimental study. J Phys Chem C 2011;115(35):17440–51
doi: 10.1021/jp204003q
68   Abo-Hamed EK, Pennycook T, Vaynzof Y, Toprakcioglu C, Koutsioubas A, Scherman OA. Highly active metastable ruthenium nanoparticles for hydrogen production through the catalytic hydrolysis of ammonia borane. Small 2014;10(15):3145–52
doi: 10.1002/smll.201303507
69   AlYami NM, LaGrow AP, Joya KS, Hwang J, Katsiev K, Anjum DH, et al.Tailoring ruthenium exposure to enhance the performance of FCC platinum@ruthenium core-shell electrocatalysts in the oxygen evolution reaction. Phys Chem Chem Phys 2016;18(24):16169–78
doi: 10.1039/C6CP01401A
70   Yao Y, He DS, Lin Y, Feng X, Wang X, Yin P, et al.Modulating FCC and HCP ruthenium on the surface of palladium–copper alloy through tunable lattice mismatch. Angew Chem 2016;128(18):5591–5. German
doi: 10.1002/ange.201601016
71   Zhao M, Figueroa-Cosme L, Elnabawy AO, Vara M, Yang X, Roling LT, et al.Synthesis and characterization of Ru cubic nanocages with a face-centered cubic structure by templating with Pd nanocubes. Nano Lett 2016;16(8):5310–7
doi: 10.1021/acs.nanolett.6b02795
72   Li W, Liu J, Gu J, Zhou W, Yao S, Si R, et al.Chemical insights into the design and development of face-centered cubic ruthenium catalysts for Fischer–Tropsch synthesis. J Am Chem Soc 2017;139(6):2267–76
doi: 10.1021/jacs.6b10375
73   De Smit E, Cinquini F, Beale AM, Safonova OV, van Beek W, Sautet P, et al.Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer–Tropsch synthesis: Controlling μC. J Am Chem Soc 2010;132(42):14928–41
doi: 10.1021/ja105853q
74   Niemantsverdriet JW, van der Kraan AM, van Dijk WM, van der Baan HS. Behavior of metallic iron catalysts during Fischer–Tropsch synthesis studied with Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements. J Phys Chem 1980;84(25):3363–70
doi: 10.1021/j100462a011
75   Kuei CK, Lee MD. Temperature-programmed reaction of pre-adsorbed CO on iron catalyst: New experimental evidence for competition model. J Mol Catal 1991;65(3):293–305
doi: 10.1016/0304-5102(91)85066-B
76   Bukur DB, Nowicki L, Manne RK, Lang X. Activation studies with a precipitated iron catalyst for Fischer–Tropsch synthesis: II. Reaction studies. J Catal 1995;155(2):366–75
doi: 10.1006/jcat.1995.1218
77   Amelse JA, Butt JB, Schwartz LH. Carburization of supported iron synthesis catalysts. J Phys Chem 1978;82(5):558–63
doi: 10.1021/j100494a012
78   Bukur DB, Okabe K, Rosynek MP, Li C, Wang D, Rao K, et al.Activation studies with a precipitated iron catalyst for Fischer–Tropsch synthesis: I. Characterization studies. J Catal 1995;155(2):353–65
doi: 10.1006/jcat.1995.1217
79   Badani MV, Delgass WN. The active phase of iron catalysts for acetonitrile synthesis. J Catal 1999;187(2):506–17
doi: 10.1006/jcat.1999.2640
80   Mansker LD, Jin Y, Bukur DB, Datye AK. Characterization of slurry phase iron catalysts for Fischer–Tropsch synthesis. Appl Catal A Gen 1999;186(1–2):277–96
doi: 10.1016/S0926-860X(99)00149-0
81   Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J Catal 2006;243(1):199–211
doi: 10.1016/j.jcat.2006.07.012
82   Yang C, Zhao H, Hou Y, Ma D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer–Tropsch synthesis. J Am Chem Soc 2012;134(38):15814–21
doi: 10.1021/ja305048p
83   Zhao S, Liu X, Huo C, Li Y, Wang J, Jiao H. Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies. Catal Struct React 2015;1(1):44–60
doi: 10.1179/2055075814Y.0000000007
84   Yang Q, Fu X, Jia C, Ma C, Wang X, Zeng J, et al.Structural determination of catalytically active subnanometer iron oxide clusters. ACS Catal 2016;6(5):3072–82
doi: 10.1021/acscatal.6b00328
85   Dry M. FT catalysts. In: Steynberg A, Dry M, editors Fischer–Tropsch technology. Amsterdam: Elsevier; 2004. p. 533–600
doi: 10.1016/S0167-2991(04)80464-6
86   Rytter E, Skagseth TH, Eri S, Sjåstad AO. Cobalt Fischer–Tropsch catalysts using nickel promoter as a rhenium substitute to suppress deactivation. Ind Eng Chem Res 2010;49(9):4140–8
doi: 10.1021/ie100308f
87   Illy S, Tillement O, Machizaud F, Dubois J, Massicot F, Fort Y, et al.First direct evidence of size-dependent structural transition in nanosized nickel particles. Philos Mag A 1999;79(5):1021–31
doi: 10.1080/01418619908210344
88   Hemenger P, Weik H. On the existence of hexagonal nickel. Acta Cryst 1965;19:690–1
doi: 10.1107/S0365110X65004206
89   Mi Y, Yuan D, Liu Y, Zhang J, Xiao Y. Synthesis of hexagonal close-packed nanocrystalline nickel by a thermal reduction process. Mater Chem Phys 2005;89(2–3):359–61
doi: 10.1016/j.matchemphys.2004.09.012
90   Han M, Liu Q, He J, Song Y, Xu Z, Zhu J. Controllable synthesis and magnetic properties of cubic and hexagonal phase nickel nanocrystals. Adv Mater 2007;19(8):1096–100
doi: 10.1002/adma.200601460
91   Lahiri A, Das R. Synthesis of face-centered cubic and hexagonal closed-packed nickel using ionic liquids. J Appl Electrochem 2010;40(11):1991–5
doi: 10.1007/s10800-010-0178-7
92   Lahiri A, Das R, Reddy RG. Electrochemical synthesis of hexagonal closed-pack nickel: A hydrogen storage material. J Power Sources 2010;195(6):1688–90
doi: 10.1016/j.jpowsour.2009.09.037
93   Lahiri A, Tadisina Z. Synthesis, thermodynamic and magnetic properties of pure hexagonal close-packed nickel. Mater Chem Phys 2010;124(1):41–3
doi: 10.1016/j.matchemphys.2010.07.019
94   Bolokang AS, Phasha MJ. Novel synthesis of metastable HCP nickel by water quenching. Mater Lett 2011;65(1):59–60
doi: 10.1016/j.matlet.2010.09.045
95   Kotoulas A, Gjoka M, Simeonidis K, Tsiaoussis I, Angelakeris M, Kalogirou O, et al.The role of synthetic parameters in the magnetic behavior of relative large HCP Ni nanoparticles. J Nanopart Res 2011;13(5):1897–908
doi: 10.1007/s11051-010-9941-2
96   Guo Y, Azmat MU, Liu X, Ren J, Wang Y, Lu G. Controllable synthesis of hexagonal close-packed nickel nanoparticles under high nickel concentration and its catalytic properties. J Mater Sci 2011;46(13):4606–13
doi: 10.1007/s10853-011-5360-8
97   Bengaard H, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, et al.Steam reforming and graphite formation on Ni catalysts. J Catal 2002;209(2):365–84
doi: 10.1006/jcat.2002.3579
98   Engbæk J, Lytken O, Nielsen JH, Chorkendorff I. CO dissociation on Ni: The effect of steps and of nickel carbonyl. Surf Sci 2008;602(3):733–43
doi: 10.1016/j.susc.2007.12.008
99   Van Ho S, Harriott P. The kinetics of methanation on nickel catalysts. J Catal 1980;64(2):272–83
doi: 10.1016/0021-9517(80)90502-3
100   Andersson MP, Abild-Pedersen F, Remediakis IN, Bligaard T, Jones G, Engbæk J, et al.Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. J Catal 2008;255(1):6–19
doi: 10.1016/j.jcat.2007.12.016
Related
[1] Luis Ribeiro e Sousa, Tiago Miranda, Rita Leal e Sousa, Joaquim Tinoco. The Use of Data Mining Techniques in Rockburst Risk Assessment[J]. Engineering, 2017, 3(4): 552 -558 .
[2] Maggie Bartolomeo. Third Global Grand Challenges Summit for Engineering[J]. Engineering, 2017, 3(4): 434 -435 .
[3] Michael Powalla, Stefan Paetel, Dimitrios Hariskos, Roland Wuerz, Friedrich Kessler, Peter Lechner, Wiltraud Wischmann, Theresa Magorian Friedlmeier. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
[4] Jian-Feng Chen. Green Chemical Engineering for a Better Life[J]. Engineering, 2017, 3(3): 279 .
[5] Ian David Lockhart Bogle. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers[J]. Engineering, 2017, 3(2): 161 -165 .
[6] Mariano Martín. Artificial versus Natural Reuse of CO2 for DME Production: Are We Any Closer?[J]. Engineering, 2017, 3(2): 166 -170 .
[7] Yun Gao, Xiang Gao, Xiaohua Zhang. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Changeto the Paris Agreement[J]. Engineering, 2017, 3(2): 272 -278 .
[8] Shabnam Sedghi, Biao Huang. Real-Time Assessment and Diagnosis of Process Operating Performance[J]. Engineering, 2017, 3(2): 214 -219 .
[9] Ismaël Amghizar, Laurien A. Vandewalle, Kevin M. Van Geem, Guy B. Marin. New Trends in Olefin Production[J]. Engineering, 2017, 3(2): 171 -178 .
[10] Xiaobo Luo, Meihong Wang. Improving Prediction Accuracy of a Rate-Based Model of an MEA-Based Carbon Capture Process for Large-Scale Commercial Deployment[J]. Engineering, 2017, 3(2): 232 -243 .
[11] Jinliang Ding, Cuie Yang, Tianyou Chai. Recent Progress on Data-Based Optimization for Mineral Processing Plants[J]. Engineering, 2017, 3(2): 183 -187 .
[12] Zhihong Yuan, Weizhong Qin, Jinsong Zhao. Smart Manufacturing for the Oil Refining and Petrochemical Industry[J]. Engineering, 2017, 3(2): 179 -182 .
[13] Yihui Ding, Ping Wu, Yanju Liu, Yafang Song. Environmental and Dynamic Conditions for the Occurrence of Persistent Haze Events in North China[J]. Engineering, 2017, 3(2): 266 -271 .
[14] Vassilis M. Charitopoulos, Lazaros G. Papageorgiou, Vivek Dua. Nonlinear Model-Based Process Operation under Uncertainty Using Exact Parametric Programming[J]. Engineering, 2017, 3(2): 202 -213 .
[15] Pedro A. Castillo Castillo, Pedro M. Castro, Vladimir Mahalec. Global Optimization of Nonlinear Blend-Scheduling Problems[J]. Engineering, 2017, 3(2): 188 -201 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2

 Engineering