Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (4) : 445 -451
Research |
Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2
Michael Powalla(),Stefan Paetel,Dimitrios Hariskos,Roland Wuerz,Friedrich Kessler,Peter Lechner,Wiltraud Wischmann,Theresa Magorian Friedlmeier
Centre for Solar Energy and Hydrogen Research Baden-Württemberg (ZSW), Stuttgart 70563, Germany

In this article, we discuss the leading thin-film photovoltaic (PV) technology based on the Cu(In,Ga)Se2 (CIGS) compound semiconductor. This contribution includes a general comparison with the conventional Si-wafer-based PV technology and discusses the basics of the CIGS technology as well as advances in world-record-level conversion efficiency, production, applications, stability, and future developments with respect to a flexible product. Once in large-scale mass production, the CIGS technology has the highest potential of all PV technologies for cost-efficient clean energy generation.

Keywords Thin-film photovoltaics      Solar energy      Flexible      Cu(InGa)Se2     
Corresponding Authors: Michael Powalla   
Issue Date: 13 September 2017
E-mail this article
E-mail Alert
Articles by authors
Michael Powalla
Stefan Paetel
Dimitrios Hariskos
Roland Wuerz
Friedrich Kessler
Peter Lechner
Wiltraud Wischmann
Theresa Magorian Friedlmeier
Cite this article:   
Michael Powalla,Stefan Paetel,Dimitrios Hariskos, et al. Advances in Cost-Efficient Thin-Film Photovoltaics Based on Cu(In,Ga)Se2[J]. Engineering, 2017, 3(4): 445 -451 .
URL:     OR
1   White paper for CIGS thin film solar cell technology [Internet]. Stuttgart: Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg; 2015 [cited 2017 Mar 1] Available from:
2   Mayer JN, Philipps S, Hussein NS, Schlegl T, Senkpiel C. Current and future cost of photovoltaics: Long-term scenarios for market development, system prices and LCOE of utility-scale PV systems [Internet]. Freiburg: Fraunhofer Institute for Solar Energy Systems; 2015 [cited 2017 Mar 1] Available from:
3   De Wild-Scholten MJ. Energy payback time and carbon footprint of commercial photovoltaic systems. Sol Energ Mat Sol C 2013;119:296–305
doi: 10.1016/j.solmat.2013.08.037
4   Wuerz R, Eicke A, Kessler F, Rogin P, Yazdani-Assl O. Alternative sodium sources for Cu(In,Ga)Se2 thin-film solar cells on flexible substrates. Thin Solid Films 2011;519(21):7268–71
doi: 10.1016/j.tsf.2011.01.399
5   Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, et al.CIGS absorbers and processes. Prog Photovoltaics 2010;18(6):453–66
doi: 10.1002/pip.969
6   Kato T. Cu(In,Ga)(Se,S)2 solar cell research in Solar Frontier: Progress and current status. Jpn J Appl Phys 2017;56(4S):04CA02
doi: 10.7567/JJAP.56.04CA02
7   Magorian Friedlmeier T, Jackson P, Bauer A, Hariskos D, Kiowski O, Menner R, et al.High-efficiency Cu(In,Ga)Se2 solar cells. Thin Solid Films 2017;633:13–7
doi: 10.1016/j.tsf.2016.08.021
8   Powalla M, Jackson P, Witte W, Hariskos D, Paetel S, Tschamber C, et al.High-efficiency Cu(In,Ga)Se2 cells and modules. Sol Energ Mat Sol C 2013;119:51–8
doi: 10.1016/j.solmat.2013.05.002
9   Jackson P, Würz R Rau U Mattheis J, Kurth M, Schlötzer T, et al.High quality baseline for high efficiency, Cu(In1−x,Gax)Se2 solar cells. Prog Photovoltaics 2007;15(6):507–19
doi: 10.1002/pip.757
10   Jackson P, W R ü D rz E, Hariskos W, Lotter M, Witte, Powalla. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys Status Solidi–R 2016;10(8):583–6
doi: 10.1002/pssr.201600199
11   Siebentritt S. What limits the efficiency of chalcopyrite solar cells? Sol Energ Mat Sol C 2011;95(6):1471–6
doi: 10.1016/j.solmat.2010.12.014
12   Multicrystalline silicon solar cell with 21.9 percent efficiency: Fraunhofer ISE again holds world record [Internet]. Freiburg: Fraunhofer Institute for Solar Energy Systems; 2017 Feb 20 [cited 2017 Mar 1]. Available from:
13   Reinhard P, Bissig B, Pianezzi F, Avancini E, Hagendorfer H, Keller D, et al.Features of KF and NaF postdeposition treatments of Cu(In,Ga)Se2 absorbers for high efficiency thin film solar cells. Chem Mater 2015;27(16):5755–64
doi: 10.1021/acs.chemmater.5b02335
14   Magorian Friedlmeier T, Jackson P, Bauer A, Hariskos D, Kiowski O, Würz R, et al.Improved Photocurrent in Cu(In,Ga)Se2 solar cells: From 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE J Photovolt 2015;5(5):1487–91
doi: 10.1109/JPHOTOV.2015.2458039
15   Magorian Friedlmeier T, Jackson P, Kreikemeyer-Lorenzo D, Hauschild D, Kiowski O, Hariskos D, et al.A closer look at initial CdS growth on high-efficiency Cu(In,Ga)Se2 absorbers using surface-sensitive methods. In: Proceedings of the 43rd IEEE Photovoltaic Specialists Conference; 2016 Jun 5–10; Portland, OR, USA. Piscataway: The Institute of Electrical and Electronics Engineers, Inc.; 2016. p. 457–61.
16   Hariskos D, Fuchs B, Menner R, Naghavi N, Hubert C, Lincot D, et al.The Zn(S,O,OH)/ZnMgO buffer in thin-film Cu(In,Ga)(Se,S)2-based solar cells part II: Magnetron sputtering of the ZnMgO buffer layer for in-line co-evaporated Cu(In,Ga)Se2 solar cells. Prog Photovoltaics 2009;17(7):479–88
doi: 10.1002/pip.897
17   Kamada R, Yagioka T, Adachi S, Handa A, Tai KF, Kato T, et al.New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%. In: Proceedings of the 43rd IEEE Photovoltaic Specialists Conference; 2016 Jun 5–10; Portland, OR, USA. Piscataway: The Institute of Electrical and Electronics Engineers, Inc.; 2016. p. 1287–91.
18   “Best research-cell efficiencies” chart [Internet]. Golden: National Renewable Energy Laboratory; 2016 Dec 2 [cited 2017 Mar 1]. Available from:
19   Solar Frontier’s CIS thin-film submodule achieves highest efficiency world record of 19.2% [Internet]. Tokyo: Solar Frontier K.K.; 2017 Feb 27 [cited 2017 Mar 1]. Available from:
20   New world record efficiency for a CIGS PV module from Solibro [Internet]. Bitterfeld-Wolfen: Solibro GmbH; 2017 Jan [cited 2017 Mar 1]. Available from:
21   Chirilă A, Reinhard P, Pianezzi F, Bloesch P, Uhl AR, Fella C, et al.Potassium-induced surface modification of Cu(In,Ga)Se2thin films for high-efficiency solar cells. Nat Mater 2013;12(12):1107–11
doi: 10.1038/nmat3789 pmid: 24185758
22   Würz R, Eicke A, Frankenfeld M, Kessler F, Powalla M, Rogin P, et al.CIGS thin-film solar cells on steel substrates. Thin Solid Films 2009;517(7):2415–8
doi: 10.1016/j.tsf.2008.11.016
23   Würz R, Eicke A, Kessler F, Paetel S, Efimenko S, Schlegel C. CIGS thin-film solar cells and modules on enamelled steel substrates. Sol Energ Mat Sol C 2012;100:132–7
doi: 10.1016/j.solmat.2012.01.004
24   Rudmann D, Brémaud D, Zogg H, Tiwari AN. Na incorporation into Cu(In,Ga)Se2for high-efficiency flexible solar cells on polymer foils. J Appl Phys 2005;97(8):084903
doi: 10.1063/1.1857059
25   Powalla M, Witte W, Jackson P, Paetel S, Lotter E, Würz R, et al.CIGS cells and modules with high efficiency on glass and flexible substrates. IEEE J Photovolt 2014;4(1):440–6
doi: 10.1109/JPHOTOV.2013.2280468
[1] Qingshan Huang, Fuhua Jiang, Lianzhou Wang, Chao Yang. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms[J]. Engineering, 2017, 3(3): 318 -329 .
[2] Mariano Martín. Artificial versus Natural Reuse of CO2 for DME Production: Are We Any Closer?[J]. Engineering, 2017, 3(2): 166 -170 .
[3] Joris Smits. Fiber-Reinforced Polymer Bridge Design in the Netherlands: Architectural Challenges toward Innovative, Sustainable, and Durable Bridges[J]. Engineering, 2016, 2(4): 518 -527 .
[4] Zheng Li, Jan Feiling, Hongliang Ren, Haoyong Yu. A Novel Tele-Operated Flexible Robot Targeted for Minimally Invasive Robotic Surgery[J]. Engineering, 2015, 1(1): 73 -78 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.