Please wait a minute...
Submit  |   Chinese  | 
 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (4) : 494 -503     https://doi.org/10.1016/J.ENG.2017.04.023
Research |
On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines
Yuan Yuan,Jiong Tang()
Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
Abstract
Abstract  

This article provides a survey of recently emerged methods for wind turbine control. Multivariate control approaches to the optimization of power capture and the reduction of loads in components under time-varying turbulent wind fields have been under extensive investigation in recent years. We divide the related research activities into three categories: modeling and dynamics of wind turbines, active control of wind turbines, and passive control of wind turbines. Regarding turbine dynamics, we discuss the physical fundamentals and present the aeroelastic analysis tools. Regarding active control, we review pitch control, torque control, and yaw control strategies encompassing mathematical formulations as well as their applications toward different objectives. Our survey mostly focuses on blade pitch control, which is considered one of the key elements in facilitating load reduction while maintaining power capture performance. Regarding passive control, we review techniques such as tuned mass dampers, smart rotors, and microtabs. Possible future directions are suggested.

Keywords Wind turbine      Control approach      Power optimization      Load mitigation     
Corresponding Authors: Jiong Tang   
Just Accepted Date: 17 August 2017   Issue Date: 13 September 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuan Yuan
Jiong Tang
Cite this article:   
Yuan Yuan,Jiong Tang. On Advanced Control Methods toward Power Capture and Load Mitigation in Wind Turbines[J]. Engineering, 2017, 3(4): 494 -503 .
URL:  
http://engineering.org.cn/EN/10.1016/J.ENG.2017.04.023     OR     http://engineering.org.cn/EN/Y2017/V3/I4/494
References
1   Ginley DS, Cahen D, editors. Fundamentals of materials for energy and environmental sustainability. Cambridge: Cambridge University Press; 2012.
2   Beiter P, Tian T. 2015 Renewable energy data book. Report. Washington D.C.: US Department of Energy; 2016 Nov.
3   Pao LY, Johnson KE. A tutorial on the dynamics and control of wind turbines and wind farms. In: Proceedings of the 2009 American Control Conference; 2009 Jun 10–12; St. Louis, MO, USA. Piscataway: IEEE Press; 2009. p. 2076–89
doi: 10.1109/ACC.2009.5160195
4   Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-MW reference wind turbine for offshore system development. Report. Golden: National Renewable Energy Laboratory; 2009 Feb. Report No.: NREL/TP-500-38060.
5   Namik H, Stol K. Disturbance accommodating control of floating offshore wind turbines. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition; 2009 Jan 5–8; Orlando, FL, USA. Reston: AIAA; 2009. p. 483
doi: 10.2514/6.2009-483
6   Pao LY, Johnson KE. Control of wind turbines. IEEE Control Systems 2011;31(2):44–62
doi: 10.1109/MCS.2010.939962
7   Wright AD. Modern control design for flexible wind turbines. Report. Golden: National Renewable Energy Laboratory; 2004 Jul. Report No.: NREL/TP-500-35816.
8   Wright AD, Balas MJ. Design of controls to attenuate loads in the controls advanced research turbine. J Sol Energy Eng 2004;126(4):1083–91
doi: 10.1115/1.1792654
9   Stol KA, Zhao W, Wright AD. Individual blade pitch control for the controls advanced research turbine (CART). J Sol Energy Eng 2006;128(4):498–505
doi: 10.1115/1.2349542
10   Wright A, Fingersh L, Stol K. Designing and testing controls to mitigate tower dynamic loads in the controls advanced research turbine. In: Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit; 2007 Jan 8–11; Reno, NV, USA. Reston: AIAA; 2007. p. 1021
doi: 10.2514/6.2007-1021
11   Jonkman JM, Buhl ML Jr. FAST user’s guide. Report. Golden: National Renewable Energy Laboratory; 2005 Aug. Report No.: NREL/EL-500-38230.
12   Bossanyi E. GH Bladed theory manual. Bristol: Garrad Hassan & Partners Ltd; 2011.
13   Larsen TJ, Hansen AM. How 2 HAWC2, the user's manual. Roskilde: Risø National Laboratory; 2007 Dec.
14   Øye S. FLEX4 simulation of wind turbine dynamics. In: Proceedings of the 28th Meeting of Experts on State of the Art of Aerolastic Codes for Wind Turbine Calculation; 1996 Apr 11–12; Lyngby, Denmark. Paris: International Energy Agency; 1996. p. 71–7.
15   Moriarty PJ, Hansen AC. AeroDyn theory manual. Report. Golden: National Renewable Energy Laboratory; 2005 Jan. Report No.: NREL/TP-500-36881.
16   Miller R. Helicopter control and stability in hovering flight. J Aeronaut Sci 1948;15(8):453–72
doi: 10.2514/8.11623
17   Bir G. Multiblade coordinate transformation and its application to wind turbine analysis. Report. Golden: National Renewable Energy Laboratory; 2008 Jan. Report No.: NREL/CP-500-42553.
18   Laks J, Pao L, Wright A, Kelley N, Jonkman B. The use of preview wind measurements for blade pitch control. Mechatronics 2011;21(4):668–81
doi: 10.1016/j.mechatronics.2011.02.003
19   Yuan Y, Chen X, Tang J. Disturbance observer based pitch control of wind turbines for disturbance rejection. In: Proceedings of the SPIE Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring. 2016 March 20–24; Las Vegas, USA. Bellingham: SPIE; 2016. p. 980609.
20   Frost SA, Balas MJ, Wright AD. Direct adaptive control of a utility-scale wind turbine for speed regulation. Int J Robust Nonlinear Control 2009;19(1):59–71
doi: 10.1002/rnc.1329
21   Johnson C. Theory of disturbance-accommodating controllers. Contr Dyn Syst 1976;12:387–489
doi: 10.1016/B978-0-12-012712-2.50013-5
22   Johnson C. Disturbance-accommodating control—Overview of the subject. J Interdiscipl Model Simulat 1980;3(1):1–29.
23   Johnson C. Discrete-time disturbance-accommodating control theory with applications to missile digital control. J Guid Control Dyn 1981;4(2):116–25
doi: 10.2514/3.19731
24   Johnson C. Disturbance-accommodating control—An overview. In: Proceedings of the 1986 American Control Conference; 1986 Jun 18–20; Seattle, USA. Piscataway: IEEE Press; 2009. p. 526–36.
25   Kendall L, Balas MJ, Lee Y, Fingersh L. Application of proportional-integral and disturbance accommodating control to variable speed variable pitch horizontal axis wind turbines. Wind Eng 1997;21(1):21–38.
26   Balas MJ, Lee YJ, Kendall L. D isturbance tracking control theory with application to horizontal axis wind turbines. In: Proceedings of the 1998 ASME Wind Energy Symposium; 1998 Jan 12–15; Reno, NV, USA. Reston: AIAA; 1998. p. 95–9
doi: 10.2514/6.1998-32
27   Stol K, Rigney B, Balas M. Disturbance accommodating control of a variable-speed turbine using a symbolic dynamics structural model. In: Proceeding of the 2000 ASME Wind Energy Symposium; 2000 Jan 10–13; Reno, NV, USA. Reston: AIAA; 2000. p. 84
doi: 10.2514/6.2000-29
28   Stol KA, Balas MJ. Periodic disturbance accommodating control for blade load mitigation in wind turbines. J Sol Energy Eng 2003;125(4):379–85
doi: 10.1115/1.1621672
29   Hand MM. Mitigation of wind turbine/vortex interaction using disturbance accommodating control. Report. Golden: National Renewable Energy Laboratory; 2003 Dec. Report No.: NREL/TP-500-35172.
30   Hand MM, Balas MJ. Blade load mitigation control design for a wind turbine operating in the path of vortices. Wind Energy 2007;10(4):339–55
doi: 10.1002/we.225
31   Wang N, Wright AD, Balas MJ. Disturbance-accommodating control-based individual blade pitch control design for two-bladed turbines. In: Proceedings of the 34th Wind Energy Symposium, AIAA SciTech Forum; 2016 Jan 4–8; San Diego, CA, USA. Reston: AIAA; 2016. p. 1736.
32   Wang N, Wright AD, Johnson KE. Independent blade pitch controller design for a three-bladed turbine using disturbance accommodating control. In: Proceedings of the 2016 American Control Conference; 2016 Jul 6–8; Boston, MA, USA. Golden: National Renewable Energy Laboratory; 2016. p. 2301–6
doi: 10.1109/ACC.2016.7525261
33   Wang N, Wright AD, Balas MJ. Disturbance accommodating control design for wind turbines using solvability conditions. J Dyn Syst Meas Control 2017;139(4):041007
doi: 10.1115/1.4035097
34   Pace A, Johnson K, Wright A. Preventing wind turbine overspeed in highly turbulent wind events using disturbance accommodating control and light detection and ranging. Wind Energy 2015;18(2):351–68
doi: 10.1002/we.1705
35   Camacho EF, Bordons C. Model predictive control . Berlin: Springer; 1999
doi: 10.1007/978-1-4471-3398-8
36   Soliman M, Malik O, Westwick D. Multiple model MIMO predictive control for variable speed variable pitch wind turbines. In: Proceedings of the 2010 American Control Conference; 2010 Jun 30–Jul 2; Baltimore, MD, USA. Piscataway: IEEE Press; 2010. p. 2778–84
doi: 10.1109/ACC.2010.5531355
37   Henriksen LC. Model predictive control of a wind turbine [dissertation]. Lyngby: Technical University of Denmark; 2007.
38   Schlipf D, Grau P, Raach S, Duraiski R, Trierweiler J, Cheng PW. Comparison of linear and nonlinear model predictive control of wind turbines using LIDAR. In: Proceedings of the 2014 American Control Conference; 2014 Jun 4–6; Portland, OR, USA. Piscataway: IEEE Press; 2014. p. 3742–7
doi: 10.1109/ACC.2014.6859205
39   Kumar A, Stol K. Scheduled model predictive control of a wind turbine. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition; 2009 Jan 5–8; Orlando, FL, USA. Reston: AIAA; 2009. p. 481
doi: 10.2514/6.2009-481
40   Schlipf D, Schlipf DJ, Kühn M. Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy 2013;16(7):1107–29
doi: 10.1002/we.1533
41   Bottasso C, Croce A, Savini B. Performance comparison of control schemes for variable-speed wind turbines. J Phys Conf Ser 2007;75:012079
doi: 10.1088/1742-6596/75/1/012079
42   Mirzaei M, Soltani M, Poulsen NK, Niemann HH. Model predictive control of wind turbines using uncertain LIDAR measurements. In: Proceedings of the 2013 American Control Conference; 2013 Jun 17–19; Washington D.C., USA. Piscataway: IEEE Press; 2013. p. 2235–40
doi: 10.1109/ACC.2013.6580167
43   Korber A, King R. Model predictive control for wind turbines. In: Proceedings of the European Wind Energy Conference ; 2010 Apr 20–23; Warsaw, Poland. Brussels: WindEurope; 2010.
44   Simley E, Pao LY, Frehlich R, Jonkman B, Kelley N. Analysis of wind speed measurements using continuous wave LIDAR for wind turbine control. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011 Jan 4–7; Orlando, FL, USA. Reston: AIAA; 2011. p. 263
doi: 10.2514/6.2011-263
45   Laks J, Pao LY, Simley E, Wright A, Kelley N, Jonkman B. Model predictive control using preview measurements from LIDAR. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011 Jan 4–7; Orlando, FL, USA. Reston: AIAA; 2011. p. 813
doi: 10.2514/6.2011-813
46   Santos RA. Damage mitigating control for wind turbines [dissertation]. Boulder: University of Colorado at Boulder; 2007.
47   Odgaaard PF, Knudsen T, Overgaard A, Steffensen H, Jørgensen M. Importance of dynamic inflow in model predictive control of wind turbines. IFAC-PapersOnLine 2015;48(30):90–5
doi: 10.1016/j.ifacol.2015.12.359
48   Spencer MD, Stol KA, Unsworth CP, Cater JE, Norris SE. Model predictive control of a wind turbine using short-term wind field predictions. Wind Energy 2013;16(3):417–34
doi: 10.1002/we.1501
49   Jain A, Schildbach G, Fagiano L, Morari M. On the design and tuning of linear model predictive control for wind turbines. Renew Energy 2015;80:664–73
doi: 10.1016/j.renene.2015.02.057
50   Odgaard PF, Larsen LF, Wisniewski R, Hovgaard TG. On using Pareto optimality to tune a linear model predictive controller for wind turbines. Renew Energy 2016;87(Pt 2):884–91
doi: 10.1016/j.renene.2015.09.067
51   Lescher F, Zhao JY, Martinez A. Multiobjective H2/H∞ control of a pitch regulated wind turbine for mechanical load reduction. Renew Energy Power Quality J 2006;1:100–5
doi: 10.24084/repqj04.248
52   Sloth C, Esbensen T, Niss MO, Stoustrup J, Odgaard PF. Robust LMI-based control of wind turbines with parametric uncertainties. In: Proceedings of the IEEE International Conference on Control Applications & Intelligent Control (2009); 2009 Jul 8–10; St. Petersburg, Russia. Piscataway: IEEE Press; 2009. p. 776–81
doi: 10.1109/CCA.2009.5281171
53   De Corcuera AD, Pujana-Arrese A, Ezquerra JM, Segurola E, Landaluze J. H∞ based control for load mitigation in wind turbines. Energies 2012;5(4):938–67
doi: 10.3390/en5040938
54   Vali M, van Wingerden JW, Kýhn M. Optimal multivariable individual pitch control for load reduction of large wind turbines. In: Proceedings of the 2016 American Control Conference; 2016 Jul 6–8; Boston, MA, USA. Piscataway: IEEE Press; 2016. p. 3163–9
doi: 10.1109/ACC.2016.7525404
55   Ozdemir AA, Seiler PJ, Balas GJ. Performance of disturbance augmented control design in turbulent wind conditions. Mechatronics 2011;21(4):634–44
doi: 10.1016/j.mechatronics.2011.01.008
56   Laks J, Pao L, Wright A. Combined feedforward/feedback control of wind turbines to reduce blade flap bending moments. In: Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition; 2009 January 5–8; Orlando, FL, USA. Reston: AIAA; 2009. p. 687
doi: 10.2514/6.2009-687
57   Wang N, Johnson KE. Combined LIDAR-based feedforward and feedback controllers for wind turbines with tower and blade damping. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2011 Jan 4–7; Orlando, FL, USA. Reston: AIAA; 2011. p. 814
doi: 10.2514/6.2011-814
58   Van der Hooft E, Van Engelen T. Estimated wind speed feed forward control for wind turbine operation optimization. In: Proceedings of the European Wind Energy Conference; 2004 Nov 22 – 25; London, UK. Petten: Energy Research Centre of the Netherlands; 2004. p. 126.
59   Selvam K, Kanev S, van Wingerden JW, van Engelen T, Verhaegen M. Feedback–feedforward individual pitch control for wind turbine load reduction. Int J Robust Nonlinear Control 2009;19(1):72–91
doi: 10.1002/rnc.1324
60   Laks J, Pao LY, Wright A, Kelley N, Jonkman B. Blade pitch control with preview wind measurements. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2010 Jan 4–7; Orlando, FL, USA. Reston: AIAA; 2010. p. 251
doi: 10.2514/6.2010-251
61   Dunne F, Pao LY, Wright AD, Jonkman B, Kelley N. Adding feedforward blade pitch control to standard feedback controllers for load mitigation in wind turbines. Mechatronics 2011;21(4):682–90
doi: 10.1016/j.mechatronics.2011.02.011
62   Wang N, Johnson KE, Wright AD. FX-RLS-based feedforward control for LIDAR-enabled wind turbine load mitigation. IEEE Trans Contr Syst Technol 2012;20(5):1212–22
doi: 10.1109/TCST.2011.2163515
63   Simley E, Pao L. Reducing LIDAR wind speed measurement error with optimal filtering. In: Proceedings of the 2013 American Control Conference; 2013 Jun 17–19; Washington, DC , USA. Piscataway: IEEE Press; 2013. p. 621–7
doi: 10.1109/ACC.2013.6579906
64   Scholbrock A, Fleming P, Fingersh L, Wright A, Schlipf D, Belen F. Field testing LIDAR based feedforward controls on the NREL controls advanced research turbine. In: Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition; 2013 Jan 7–10; Grapevine, TX, USA. Reston: AIAA; 2013. p. 0818
doi: 10.2514/6.2013-818
65   Fleming P, Scholbrock A, Jehu A, Davoust S, Osler E, Wright A, et al.Field-test results using a nacelle-mounted LIDAR for improving wind turbine power capture by reducing yaw misalignment. J Phys Conf Ser 2014;524:012002
doi: 10.1088/1742-6596/524/1/012002
66   Johnson KE. Adaptive torque control of variable speed wind turbines. Report. Golden: National Renewable Energy Laboratory; 2004 Aug. Report No.: NREL/TP-500-36265.
67   Johnson KE, Pao LY, Balas MJ, Kulkami V, Fingersh LJ. Stability analysis of an adaptive torque controller for variable speed wind turbines. In: Proceedings of the 43rd IEEE Conference on Decision and Control; 2004 Dec 14–17; Nassau, Bahamas. Piscataway: IEEE Press; 2005. p. 4087–94.
68   Magar KT, Balas MJ, Frost SA. Direct adaptive torque control for maximizing the power captured by wind turbine in partial loading condition. Wind Energy 2015;19(5):911–22
doi: 10.1002/we.1874
69   Beltran B, Ahmed-Ali T, Benbouzid MEH. High-order sliding-mode control of variable-speed wind turbines. IEEE Trans Ind Electron 2009;56(9):3314–21
doi: 10.1109/TIE.2008.2006949
70   Boukhezzar B, Lupu L, Siguerdidjane H, Hand M. Multivariable control strategy for variable speed, variable pitch wind turbines. Renew Energy 2007;32(8):1273–87
doi: 10.1016/j.renene.2006.06.010
71   Ekelund T. Yaw control for reduction of structural dynamic loads in wind turbines. J Wind Eng Ind Aerodyn 2000;85(3):241–62
doi: 10.1016/S0167-6105(99)00128-2
72   Gebraad P, Teeuwisse F, Wingerden J, Fleming PA, Ruben S, Marden J, et al.Wind plant power optimization through yaw control using a parametric model for wake effects—A CFD simulation study. Wind Energy 2016;19(1):95–114
doi: 10.1002/we.1822
73   Marathe N, Swift A, Hirth B, Walker R, Schroeder J. Characterizing power performance and wake of a wind turbine under yaw and blade pitch. Wind Energy 2015;19(5):963–78
doi: 10.1002/we.1875
74   Fleming PA, Ning A, Gebraad PM, Dykes K. Wind plant system engineering through optimization of layout and yaw control. Wind Energy 2016;19(2):329–44
doi: 10.1002/we.1836
75   Gebraad P, Thomas JJ, Ning A, Fleming P, Dykes K. Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control. Wind Energy 2016;20(1):97–107
doi: 10.1002/we.1993
76   Murtagh P, Ghosh A, Basu B, Broderick B. Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence. Wind Energy 2008;11(4):305–17
doi: 10.1002/we.249
77   Lackner MA, Rotea MA. Passive structural control of offshore wind turbines. Wind Energy 2011;14(3):373–88
doi: 10.1002/we.426
78   Van Wingerden JW, Hulskamp AW, Barlas T, Marrant B, van Kuik G, Molenaar D, et al.On the proof of concept of a “smart” wind turbine rotor blade for load alleviation. Wind Energy 2008;11(3):265–80
doi: 10.1002/we.264
79   Yen D, van Dam C, Smith R, Collins S. Active load control for wind turbine blades using MEM translational tabs. In: Proceedings of the 20th 2011 ASME Wind Energy Symposium; 2001 Jan 11–14; Reno, NV, USA. Reston: AIAA; 2001. p. 0031
doi: 10.2514/6.2001-31
80   Macquart T, Maheri A, Busawon K. Microtab dynamic modelling for wind turbine blade load rejection. Renew Energy 2014;64:144–52
doi: 10.1016/j.renene.2013.11.011
81   Nakafuji DY, van Dam CP, Michel J, Morrison P. Load control for turbine blades: A non-traditional microtab approach. In: Proceedings of the 2002 ASME Wind Energy Symposium; 2002 Jan 14–17; Reno, NV, USA. Reston: AIAA; 2002. p. 321–30
doi: 10.1115/WIND2002-54
82   Kumar AA, Bossanyi EA, Scholbrock AK, Fleming P, Boquet M, Krishnamurthy R. Field testing of LIDAR assisted feedforward control algorithms for improved speed control and fatigue load reduction on a 600 kW wind turbine. Report. Golden: National Renewable Energy Laboratory; 2015 Nov. Report No.: NREL/CP-5000-65062.
Related
No related articles found!
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2

 Engineering