Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (5) : 675 -684
Research |
A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing
Dongdong Gu1,2(),Chenglong Ma1,2,Mujian Xia1,2,Donghua Dai1,2,Qimin Shi1,2
1. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Selective laser melting (SLM) additive manufacturing (AM) technology has become an important option for the precise manufacturing of complex-shaped metallic parts with high performance. The SLM AM process involves complicated physicochemical phenomena, thermodynamic behavior, and phase transformation as a high-energy laser beam melts loose powder particles. This paper provides multiscale modeling and coordinated control for the SLM of metallic materials including an aluminum (Al)-based alloy (AlSi10Mg), a nickel (Ni)-based super-alloy (Inconel 718), and ceramic particle-reinforced Al-based and Ni-based composites. The migration and distribution mechanisms of aluminium nitride (AlN) particles in SLM-processed Al-based nanocomposites and the in situ formation of a gradient interface between the reinforcement and the matrix in SLM-processed tungsten carbide (WC)/Inconel 718 composites were studied in the microscale. The laser absorption and melting/densification behaviors of AlSi10Mg and Inconel 718 alloy powder were disclosed in the mesoscale. Finally, the stress development during line-by-line localized laser scanning and the parameter-dependent control methods for the deformation of SLM-processed composites were proposed in the macroscale. Multiscale numerical simulation and experimental verification methods are beneficial in monitoring the complicated powder-laser interaction, heat and mass transfer behavior, and microstructural and mechanical properties development during the SLM AM process.

Keywords Additive manufacturing      Selective laser melting      Multiscale modeling      Thermodynamics      Kinetics     
Corresponding Authors: Dongdong Gu   
Online First Date: 31 October 2017    Issue Date: 08 November 2017
E-mail this article
E-mail Alert
Articles by authors
Dongdong Gu
Chenglong Ma
Mujian Xia
Donghua Dai
Qimin Shi
Cite this article:   
Dongdong Gu,Chenglong Ma,Mujian Xia, et al. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675 -684 .
URL:     OR
1   Lu BH, Li DC, Tian XY. Development trends in additive manufacturing and 3D printing. Engineering 2015;1(1):85–9
doi: 10.15302/J-ENG-2015012
2   Derby B. Additive manufacture of ceramics components by inkjet printing. Engineering 2015;1(1):113–23
doi: 10.15302/J-ENG-2015014
3   Clausen A, Aage N, Sigmund O. Exploiting additive manufacturing infill in topology optimization for improved buckling load. Engineering 2016;2(2):250–7
doi: 10.1016/J.ENG.2016.02.006
4   Liu Y, Li A, Cheng X, Zhang SQ, Wang HM. Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel. Mater Sci Eng A 2016;666:27–33
doi: 10.1016/j.msea.2016.04.014
5   Haberland C, Elahinia M, Walker JM, Meier H, Frenzel J. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct 2014;23(10):104002
doi: 10.1088/0964-1726/23/10/104002
6   Huang WD, Lin X. Research progress in laser solid forming of high performance metallic components at the State Key Laboratory of Solidification Processing of China. 3D Print Addit Manuf 2014;1(3):156–65
doi: 10.1089/3dp.2014.0016
7   Wang D, Mai SZ, Xiao DM, Yang YQ. Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM. Int J Adv Manuf Technol 2016;86(1–4):781–92
doi: 10.1007/s00170-015-8216-6
8   Gu DD, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int Mater Rev 2012;57(3):133–64
doi: 10.1179/1743280411Y.0000000014
9   King W, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater Sci Technol 2015;31(8):957–68
doi: 10.1179/1743284714Y.0000000728
10   Qiu CL, Panwisawas C, Ward M, Basoalto HC, Brooks JW, Attallah MM. On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 2015;96:72–9
doi: 10.1016/j.actamat.2015.06.004
11   Dai DH, Gu DD. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int J Mach Tool Manuf 2016;100:14–24:
doi: 10.1016/j.ijmachtools.2015.10.004
12   Gussone J, Garces G, Haubrich J, Stark A, Hagedorn YC, Schell N,et al.Microstructure stability of γ-TiAl produced by selective laser melting. Scripta Mater 2017;130:110–3
doi: 10.1016/j.scriptamat.2016.11.028
13   Kenel C, Grolimund D, Fife JL, Samson VA, Van Petegem S, Van Swygenhoven H, et al.Combined in situ synchrotron micro X-ray diffraction and high-speed imaging on rapidly heated and solidified Ti-48Al under additive manufacturing conditions. Scripta Mater 2016;114:117–20
doi: 10.1016/j.scriptamat.2015.12.009
14   Kempen K, Thijs L, Van Humbeeck J, Kruth JP. Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterization. Mater Sci Technol 2015;31(8):917–23
doi: 10.1179/1743284714Y.0000000702
15   Matthews MJ, Guss G, Khairallah SA, Rubenchik AM, Depond PJ, King WE. Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 2016;114:33–42
doi: 10.1016/j.actamat.2016.05.017
16   Zhou X, Wang DZ, Liu XH, Zhang DD, Qu SL, Ma J, et al.3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT. Acta Mater 2015;98:1–16
doi: 10.1016/j.actamat.2015.07.014
17   Zaeh MF, Branner G. Investigations on residual stresses and deformations in selective laser melting. Product Eng 2010;4(1):35–45
doi: 10.1007/s11740-009-0192-y
18   Yan WT, Ge WJ, Smith J, Lin S, Kafka OL, Lin F,et al.Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 2016;115:403–12
doi: 10.1016/j.actamat.2016.06.022
19   Gu DD, Yuan PP. Thermal evolution behavior and fluid dynamics during laser additive manufacturing of Al-based nanocomposites: Underlying role of reinforcement weight fraction. J Appl Phys 2015;118(23):233109
doi: 10.1063/1.4937905
20   Khairallah SA, Anderson AT, Rubenchik A, King WE. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 2016;108:36–45
doi: 10.1016/j.actamat.2016.02.014
21   Yu GQ, Gu DD, Dai DH, Xia MJ, Ma CL, Chang K. Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. Appl Phys A 2016;122:891
doi: 10.1007/s00339-016-0428-6
22   Dai DH, Gu DD. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres. Appl Surf Sci 2015;355:310–9
doi: 10.1016/j.apsusc.2015.07.044
23   Gu DD, Shen YF. Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. J Alloys Compd 2007;432(1–2):163–6
doi: 10.1016/j.jallcom.2006.06.011
24   Zhao XM, Chen J, Lin X, Huang WD. Study on microstructure and mechanical properties of laser rapid forming Inconel 718. Mater Sci Eng A 2008;478(1–2):119–24
doi: 10.1016/j.msea.2007.05.079
25   Liang YJ, Li A, Cheng X, Pang XT, Wang HM. Prediction of primary dendritic arm spacing during laser rapid directional solidification of single-crystal nickel-base superalloys. J Alloys Compd 2016;688(Part A):133–42
doi: 10.1016/j.jallcom.2016.06.289
26   Gu DD. Materials creation adds new dimensions to 3D printing. Sci Bull 2016;61(22):1718–22
doi: 10.1007/s11434-016-1191-y
27   Han QQ, Setchi R, Evans SL. Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol 2016;297:183–92
doi: 10.1016/j.powtec.2016.04.015
28   Shi QM, Gu DD, Xia MJ, Cao SN, Rong T. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt Laser Technol 2016;84:9–22
doi: 10.1016/j.optlastec.2016.04.009
[1] Shutian Liu, Quhao Li, Junhuan Liu, Wenjiong Chen, Yongcun Zhang. A Realization Method for Transforming a Topology Optimization Design into Additive Manufacturing Structures[J]. Engineering, 2018, 4(2): 277 -285 .
[2] Quy Bau Nguyen, Mui Ling Sharon Nai, Zhiguang Zhu, Chen-Nan Sun, Jun Wei, Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695 -700 .
[3] Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648 -652 .
[4] Patcharapit Promoppatum, Shi-Chune Yao, P. Chris Pistorius, Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685 -694 .
[5] Wentao Yan, Ya Qian, Weixin Ma, Bin Zhou, Yongxing Shen, Feng Lin. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701 -707 .
[6] Zhen Zhang, Peng Yan, Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708 -715 .
[7] Amelia Yilin Lee, Jia An, Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663 -674 .
[8] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250 -257 .
[9] Jun Yang,Yang Yang,Zhizhu He,Bowei Chen,Jing Liu. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future[J]. Engineering, 2015, 1(4): 506 -512 .
[10] Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261 -268 .
[11] Chao Guo, Wenjun Ge, Feng Lin. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies[J]. Engineering, 2015, 1(1): 124 -130 .
[12] Bingheng Lu, Dichen Li, Xiaoyong Tian. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1): 85 -89 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.