Please wait a minute...
Submit  |   Chinese  | 
Advanced Search
   Home  |  Online Now  |  Current Issue  |  Focus  |  Archive  |  For Authors  |  Journal Information   Open Access  
Submit  |   Chinese  | 
Engineering    2017, Vol. 3 Issue (5) : 663 -674
Research |
Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials
Amelia Yilin Lee(),Jia An(),Chee Kai Chua()
Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shape-setting) phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles—an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D) printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested.

Keywords 4D printing      Additive manufacturing      Shape memory material      Smart materials      Shape memory alloy      Shape memory polymer     
Corresponding Authors: Amelia Yilin Lee,Jia An,Chee Kai Chua   
Online First Date: 07 November 2017    Issue Date: 09 November 2017
E-mail this article
E-mail Alert
Articles by authors
Amelia Yilin Lee
Jia An
Chee Kai Chua
Cite this article:   
Amelia Yilin Lee,Jia An,Chee Kai Chua. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials[J]. Engineering, 2017, 3(5): 663 -674 .
URL:     OR
1   Wohlers T, Gornet T. History of additive manufacturing. In: Wohlers T, editor Wohlers report 2014: Additive manufacturing and 3D printing state of the industry. Fort Collins: Wohlers Associates Inc., USA; 2014. p. 1–34.
2   Chua CK, Leong KF. 3D printing and additive manufacturing: Principles and applications. 5th ed. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2017
doi: 10.1142/10200
3   Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang SF, An J, et al.3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys Prototyping 2015;10(3):103–22
doi: 10.1080/17452759.2015.1097054
4   ASTM International. ASTM F2792–2012a Standard terminology for additive manufacturing technologies. West Conshohocken: ASTM International; 2012.
5   Leist SK, Zhou J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyping 2016;11(4):249–62
doi: 10.1080/17452759.2016.1198630
6   Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: A literature review. Int J Adv Manuf Technol 2013;67(5–8):1191–203
doi: 10.1007/s00170-012-4558-5
7   Humbeeck JV. Non-medical applications of shape memory alloys. Mater Sci Eng 1999;273–275:134–48
doi: 10.1016/S0921-5093(99)00293-2
8   Mantovani D. Shape memory alloys: Properties and biomedical applications. JOM 2000;52(10):36–44
doi: 10.1007/s11837-000-0082-4
9   Meng H, Li GQ. A review of stimuli-responsive shape memory polymer composites. Polymer 2013;54(9):2199–221
doi: 10.1016/j.polymer.2013.02.023
10   Xiao X, Kong D, Qiu X, Zhang W, Liu Y, Zhang S, et al.Shape memory polymers with high and low temperature resistant properties. Sci Rep 2015;5:14137
doi: 10.1038/srep14137
11   Leng JS, Lu HB, Liu YJ, Huang WM, Du SY. Shape-memory polymers—A class of novel smart materials. MRS Bull 2009;34(11):848–55
doi: 10.1557/mrs2009.235
12   Osada Y, Matsuda A. Shape memory in hydrogels. Nature 1995;376(6537):219
doi: 10.1038/376219a0
13   Wei ZG, Sandstroröm R, Miyazaki S. Shape-memory materials and hybrid composites for smart systems: Part I shape-memory materials. J Mater Sci 1998;33(15):3743–62
doi: 10.1023/A:1004692329247
14   Wei ZG, Sandstroröm R, Miyazaki S. Shape memory materials and hybrid composites for smart systems: Part II shape-memory hybrid composites. J Mater Sci 1998;33(15):3763–83
doi: 10.1023/A:1004674630156
15   Pei E. 4D printing: Dawn of an emerging technology cycle. Assembly Autom 2014;34(4):310–4
doi: 10.1108/AA-07-2014-062
16   Tibbits S. 4D printing: Multi-material shape change. Archit Des 2014;84(1):116–21
doi: 10.1002/ad.1710
17   Pei E. 4D printing–Revolution or fad? Assembly Autom 2014;34(2):123–7
doi: 10.1108/AA-02-2014-014
18   Tibbits S. The emergence of “4D printing”. TED Talk; 2013 Feb.
19   Li JJ, Rodgers WR, Xie T. Semi-crystalline two-way shape memory elastomer. Polymer 2011;52(23):5320–5
doi: 10.1016/j.polymer.2011.09.030
20   Funakubo H. Shape memory alloys. New York: Gordon and Breach Science Publishers; 1987.
21   O’Handley RC. Model for strain and magnetization in magnetic shape-memory alloys. J Appl Phys 1998;83(6):3263–70
doi: 10.1063/1.367094
22   Sun L, Huang WM. Nature of the multistage transformation in shape memory alloys upon heating. Met Sci Heat Treat 2009;51(11–12):573–8
doi: 10.1007/s11041-010-9213-x
23   Jani JM, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des 2014;56:1078–113
doi: 10.1016/j.matdes.2013.11.084
24   Lagoudas DC. Shape memory alloys: Modeling and engineering application. New York: Spinger; 2008.
25   Fredmond M, Miyazaki S. Shape memory alloys. New York: Springer-Verlag Wien GmbH; 1996
doi: 10.1007/978-3-7091-4348-3
26   Buehler WJ, Gilfrich JV, Wiley RC. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Appl Phys 1963;34(5):1475–7
doi: 10.1063/1.1729603
27   Duerig TW, Pelton AR. Ti-Ni shape memory alloys. In: Boyer R, Welsch G, Collings EW, editors Materials properties handbook: Titanium alloys. Russell: ASM International; 1994. p. 1035–48.
28   Yoo YI, Lee JJ, Lee CH, Lim JH. An experimental study of the two-way shape memory effect in a NiTi tubular actuator. Smart Mater Struct 2010;19(12):125002
doi: 10.1088/0964-1726/19/12/125002
29   Eftifeeva A, Panchenko E, Chumlyakov Y, Maier HJ. Investigation of the two-way shape memory effect in [001]-oriented Co35Ni35Al30 single crystals. AIP Conf Proc 2016;1698(1):03002
doi: 10.1063/1.4937824
30   Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C. Stimulus-responsive shape memory materials: A review. Mater Des 2012;33:577–640
doi: 10.1016/j.matdes.2011.04.065
31   Buehler WJ, Wang FE. A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Eng 1968;1(1):105–8
doi: 10.1016/0029-8018(68)90019-X
32   Liu Y. Some factors affecting the transformation hysteresis in shape memory alloys. In: Chen HR, editor Shape memory alloys. New York: Nova Science Publishers, Inc.; 2010. p. 361–9.
33   Dynalloy Inc. Technical characteristics of Flexinol actuator wires. Tustin: Dynalloy, Inc.; 2011.
34   Dolce M, Cardone D, Marnetto R. Implementation and testing of passive control devices based on shape memory alloys. Earthq Eng Struct D 2000;29(5):945–68
doi: 10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
35   Paul DI, McGehee W, O’Handley RC, Richard M. Ferromagnetic shape memory alloys: A theoretical approach. J Appl Phys 2007;101(12):123917
doi: 10.1063/1.2740328
36   Planes A, Mañosa L. Ferromagnetic shape-memory alloys. Mater Sci Forum 2006;512:145–52
doi: 10.4028/
37   Chopra HD, Ji CH, Kokorin VV. Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys. Phys Rev B 2000;61(22):R14913–5
doi: 10.1103/PhysRevB.61.R14913
38   Tellinen J, Suorsa I, Jääskeläinen A, Aaltio I, Ullakko K. Basic properties of magnetic shape memory actuators. In: Proceedings of 8th International Conference ACTUATOR 2002; 2002 Jun 10–12; Bremen, Germany; 2002. p. 566–9.
39   Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—A new actuation mechanism with large work output. Adv Funct Mater 2009;19(7):983–98
doi: 10.1002/adfm.200801322
40   Rapp B. Nitinol for stents. Mater Today 2004;7(5):13
doi: 10.1016/S1369-7021(04)00225-1
41   Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB. Manufacturing and processing of NiTi implants: A review. Prog Mater Sci 2012;57(5):911–46
doi: 10.1016/j.pmatsci.2011.11.001
42   Haberland C, Meier H, Frenzel J. On the properties of Ni-rich NiTi shape memory alloys produced by selective laser melting. In: Proceedings of ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2012 Sep 19–21; Stone Mountain, GA, USA. West Conshohocken: ASTM International; 2012. p. 97–104.
43   Dadbakhsh S, Speirs M, Kruth JP, Schrooten J, Luyten J, Van Humbeeck J. Effect of SLM parameters on transformation temperatures of shape memory nickel titanium parts. Adv Eng Mater 2014;16(9):1140–6
doi: 10.1002/adem.201300558
44   Chua CK, Leong KF. 3D printing and additive manufacturing: Principles and applications. 4th ed. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2014
doi: 10.1142/9008
45   Khoo ZX, Ong C, Liu Y, Chua CK, Leong KF, Yang SF. Selective laser melting of nickel titanium shape memory alloy. In: Proceedings of the 2nd International Conference on Progress in Additive Manufacturing; 2016 May 16–19; Singapore; 2016. p. 451–6.
46   Shishkovsky I, Yadroitsev I, Smurov I. Direct selective laser melting of nitinol powder. Phys Procedia 2012;39:447–54
doi: 10.1016/j.phpro.2012.10.060
47   Meier H, Haberland C, Frenzel J, Zarnetta R. Selective laser melting of NiTi shape memory components. In: Proceedings of the 4th International Conference on Advanced Research and Rapid Prototyping; 2009 Oct 6–10; Leiria, Portugal. London: CRC Press; 2009. p. 233–8
doi: 10.1201/9780203859476.ch35
48   Halani PR, Kaya I, Shin YC, Karaca HE. Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition. Mater Sci Eng A 2013;559:836–43
doi: 10.1016/j.msea.2012.09.031
49   Haberland C, Elahinia M, Walker J, Meier H, Frenzel J. Additive manufacturing of shape memory devices and pseudoelastic components. In: Proceedings of ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2013 Sep 16–18; Snowbird, UT, USA. New York: ASME; 2013. p. V001T01A005
doi: 10.1115/SMASIS2013-3070
50   Andani MT, Haberland C, Walker J, Elahinia M. An investigation of effective process parameters on phase transformation temperature of nitinol manufactured by selective laser melting. In: Proceedings of ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2014 Sep 8–10; Newport, RI, USA. New York: ASME; 2014. p. V001T01A026
doi: 10.1115/SMASIS2014-7649
51   Frenzel J, George EP, Dlouhy A, Somsen C, Wagner MFX, Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 2010;58(9):3444–58
doi: 10.1016/j.actamat.2010.02.019
52   Saburi T. Ti-Ni shape memory alloys. In: Otsuka K, Wayman CM, editors Shape memory materials. New York: Cambridge University Press; 1999. p. 49–96.
53   Meier H, Haberland C, Frenzel J. Structural and functional properties of NiTi shape memory alloys produced by selective laser melting. In: Proceedings of the 5th International Conference on Advanced Research in Virtual and Rapid Prototyping; 2011 Sep 28–Oct 1; Leiria, Portugal. London: CRC Press; 2011. p. 291–6
doi: 10.1201/b11341-47
54   Andani MT, Saedi S, Turabi AS, Karamooz MR, Haberland C, Karaca HE, et al.Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater 2017;68:224–31
doi: 10.1016/j.jmbbm.2017.01.047
55   Gustmann T, Neves A, Kühn U, Gargarella P, Kiminami CS, Bolfarini C, et al.Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Addit Manuf 2016;11:23–31
doi: 10.1016/j.addma.2016.04.003
56   Vandenbroucke B, Kruth JP. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 2007;13(4):196–203
doi: 10.1108/13552540710776142
57   Shishkovsky I, Morozov Y, Smurov I. Nanofractal surface structure under laser sintering of titanium and nitinol for bone tissue engineering. Appl Surf Sci 2007;254(4):1145–9
doi: 10.1016/j.apsusc.2007.09.021
58   Le B, McVary K, Colombo A. MP25-09 use of 3D printing to prototype a custom shape memory alloy penile prosthesis. J Urology 2017;197(4):e313
doi: 10.1016/j.juro.2017.02.759
59   Khademzadeh S, Parvin N, Bariani PF. Production of NiTi alloy by direct metal deposition of mechanically alloyed powder mixtures. Int J Precis Eng Manuf 2015;16(11):2333–8
doi: 10.1007/s12541-015-0300-1
60   Donoso GR, Walczak M, Moore ER, Ramos-Grez JA. Towards direct metal laser fabrication of Cu-based shape memory alloys. Rapid Prototyping J 2017;23(2):329–36
doi: 10.1108/RPJ-02-2016-0017
61   Gall K, Maier HJ. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater 2002;50(18):4643–57
doi: 10.1016/S1359-6454(02)00315-4
62   Dadbakhsh S, Speirs M, Kruth JP, Van Humbeeck J. Influence of SLM on shape memory and compression behavior of NiTi scaffolds. CIRP Ann—Manuf Technol 2015;64(1):209–12
doi: 10.1016/j.cirp.2015.04.039
63   Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M. Structural and functional fatigue of NiTi shape memory alloys. Mater Sci Eng A 2004;378(1–2):24–33
doi: 10.1016/j.msea.2003.10.327
64   Pelton AR, Huang GH, Moine P, Sinclair R. Effects of thermal cycling on microstructure and properties in Nitinol. Mater Sci Eng A 2012;532:130–8
doi: 10.1016/j.msea.2011.10.073
65   Benafan O, Noebe RD, Padula II SA, Brown DW, Vogel S, Vaidyanathan R. T hermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution. Int J Plast 2014;56:99–118
doi: 10.1016/j.ijplas.2014.01.006
66   Bowers ML, Gao Y, Yang L, Gaydosh DJ, De Graef M, Noebe RD, et al.Austenite grain refinement during load-biased thermal cycling of a Ni49.9Ti50.1 shape memory alloy. Acta Mater 2015;91:318–29
doi: 10.1016/j.actamat.2015.03.017
67   Gao Y, Casalena L, Bowers ML, Noebe RD, Mills MJ, Wang Y. An origin of functional fatigue of shape memory alloys. Acta Mater 2017;126:389–400
doi: 10.1016/j.actamat.2017.01.001
68   Huang W, Toh W. Training two-way shape memory alloy by reheat treatment. J Mater Sci Lett 2000;19(17):1549–50
doi: 10.1023/A:1006721022185
69   Wang ZG, Zu XT, You LP, Feng XD, Zhang CF. Investigation on the two-way shape memory effect and alternating current electrothermal driving characteristics of TiNiCu shape memory alloy. J Mater Sci 2004;39(10):3391–5
doi: 10.1023/
70   Leu CC, Vokoun D, Hu CT. Two-way shape memory effect of TiNi alloys induced by hydrogenation. Metall Mater Trans A 2002;33(1):17–23
doi: 10.1007/s11661-002-0002-z
71   Townsend A, Senin N, Blunt L, Leach RK, Taylor JS. Surface texture metrology for metal additive manufacturing: A review. Precis Eng 2016;46:34–47
doi: 10.1016/j.precisioneng.2016.06.001
72   Hornat CC, Yang Y, Urban MW. Quantitative predictions of shape-memory effects in polymers. Adva Mater 2017;29(7):1603334
doi: 10.1002/adma.201603334
73   Liu Y, Genzer J, Dickey MD. “2D or not 2D”: Shape-programming polymer sheets. Prog Polym Sci 2016;52:79–106
doi: 10.1016/j.progpolymsci.2015.09.001
74   Sokolowski W, Tan S, Pryor M.Lightweight shape memory self-deployable structures for gossamer applications. In: Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference; 2004 Apr 19–22; Palm Springs, CA, USA; 2014.
75   Lendlein A, Kelch S. Shape-memory polymers. Angew Chem Int Ed 2002;41(12):2034–57
doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
76   Behl M, Lendlein A. Shape-memory polymers. Mater Today 2007;10(4):20–8
doi: 10.1016/S1369-7021(07)70047-0
77   Gall K, Mikulas M, Munshi NA, Beavers F, Tupper M. Carbon fiber reinforced shape memory polymer composites. J Intelli Mater Syst Struct 2000;11(11):877–86
doi: 10.1106/EJGR-EWNM-6CLX-3X2M
78   Lendlein A, Jiang H, Jünger O, Langer R. Light-induced shape-memory polymers. Nature 2005;434(7035):879–82
doi: 10.1038/nature03496
79   Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers 2011;3(3):1215–42
doi: 10.3390/polym3031215
80   Leng JS, Lan X, Liu YJ, Du SY. Shape-memory polymers and their composites: Stimulus methods and applications. Prog Mater Sci 2011;56(7):1077–135
doi: 10.1016/j.pmatsci.2011.03.001
81   Jiang HY, Kelch S, Lendlein A. Polymers move in response to light. Adv Mat 2006;18(11):1471–5
doi: 10.1002/adma.200502266
82   Ratna D, Karger-Kocsis J. Recent advances in shape memory polymers and composites: A review. J Mater Sci 2008;43(1):254–69
doi: 10.1007/s10853-007-2176-7
83   Huang WM, Ding Z, Wang CC, Wei J, Zhao Y, Purnawali H. Shape memory materials. Mater Today 2010;13(7–8):54–61
doi: 10.1016/S1369-7021(10)70128-0
84   Huang WM, Zhao Y, Wang CC, Ding Z, Purnawali H, Tang C, et al.Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. J Polym Res 2012;19:9952
doi: 10.1007/s10965-012-9952-z
85   Zhou Y, Huang WM. Shape memory effect in polymeric materials: Mechanisms and optimization. Proc IUTAM 2015;12:83–92
doi: 10.1016/j.piutam.2014.12.010
86   Xie T. Recent advances in polymer shape memory. Polymer 2011;52(22):4985–5000
doi: 10.1016/j.polymer.2011.08.003
87   Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 2010;35(1–2):3–23
doi: 10.1016/j.progpolymsci.2009.10.002
88   Wu XL, Huang WM, Zhao Y, Ding Z, Tang C, Zhang JL. Mechanisms of the shape memory effect in polymeric materials. Polymers 2013;5(4):1169–202
doi: 10.3390/polym5041169
89   Wang CC, Huang WM, Ding Z, Zhao Y, Purnawali H. Cooling-/water-responsive shape memory hybrids. Compos Sci Technol 2012;72(10):1178–82
doi: 10.1016/j.compscitech.2012.03.027
90   Roos Y, Karel M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J Food Sci 1991;56(1):38–43
doi: 10.1111/j.1365-2621.1991.tb07970.x
91   Lu HB, Huang WM, Yao YT. Review of chemo-responsive shape change/memory polymers. Pigm Resin Technol 2013;42(4):237–46
doi: 10.1108/PRT-11-2012-0079
92   Huang WM, Yang B, An L, Li C, Chan YS. Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl Phys Lett 2005;86(11):114105
doi: 10.1063/1.1880448
93   Varghese S, Lele AK, Srinivas D, Sastry M, Mashelkar RA. Novel macroscopic self-organization in polymer gels. Adv Mater 2001;13(20):1544–8
doi: 10.1002/1521-4095(200110)13:20<1544::AID-ADMA1544>3.0.CO;2-F
94   Huang WM, Song CL, Fu YQ, Wang CC, Zhao Y, Purnawali H, et al.Shaping tissue with shape memory materials. Adv Drug Delivery Rev 2013;65(4):515–35
doi: 10.1016/j.addr.2012.06.004
95   Zhu CC, Bettinger CJ. Photoreconfigurable physically cross-linked triblock copolymer hydrogels: Photodisintegration kinetics and structure–property relationships. Macromolecules 2015;48(5):1563–72
doi: 10.1021/ma502372f
96   Zhu CC, Bettinger CJ. Light-induced remodeling of physically crosslinked hydrogels using near-IR wavelengths. J Mater Chem B 2014;2(12):1613–8
doi: 10.1039/C3TB21689F
97   Johnson JA, Turro NJ, Koberstein JT, Mark JE. Some hydrogels having novel molecular structures. Prog Polym Sci 2010;35(3):332–7
doi: 10.1016/j.progpolymsci.2009.12.002
98   Behl M, Razzaq MY, Lendlein A. Multifunctional shape-memory polymers. Adv Mater 2010;22(31):3388–410
doi: 10.1002/adma.200904447
99   Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater Struct 2014;23(9):094007
doi: 10.1088/0964-1726/23/9/094007
100   Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett 2013;103(13):131901
doi: 10.1063/1.4819837
101   Bodaghi M, Damanpack AR, Liao WH. Self-expanding/shrinking structures by 4D printing. Smart Mater Struct 2016;25:105034
doi: 10.1088/0964-1726/25/10/105034
102   Wu J, Yuan C, Ding Z, Isakov M, Mao Y, Wang T, et al.Multi-shape active composites by 3D printing of digital shape memory polymers. Sci Rep 2016;6:24224
doi: 10.1038/srep24224
103   Yu K, Ritchie A, Mao YQ, Dunn ML, Qi HJ. Controlled sequential shape changing components by 3D printing of shape memory polymer multimaterials. Proc IUTAM 2015;12:193–203
doi: 10.1016/j.piutam.2014.12.021
104   Mao YQ, Yu K, Isakov MS, Wu JT, Dunn ML, Qi HJ. Sequential self-folding structures by 3D printed digital shape memory polymers. Sci Rep 2015;5:13616
doi: 10.1038/srep13616
105   Xie T, Xiao XC, Cheng YT. Revealing triple-shape memory effect by polymer bilayers. Macromol Rapid Commun 2009;30(21):1823–7
doi: 10.1002/marc.200900409
106   Luo XF, Mather PT. Triple-shape polymeric composites (TSPCs). Adv Funct Mater 2010;20(16): 2649–56
doi: 10.1002/adfm.201000052
107   Ge Q, Luo XF, Iversen CB, Nejad HB, Mather PT, Dunn ML, et al.A finite deformation thermomechanical constitutive model for triple shape polymeric composites based on dual thermal transitions. Int J Solids Struct 2014;51(15–16):2777–90
doi: 10.1016/j.ijsolstr.2014.03.029
108   Xie T. Tunable polymer multi-shape memory effect. Nature 2010;464(7286):267–70
doi: 10.1038/nature08863
109   Bellin I, Kelch S, Langer R, Lendlein A. Polymeric triple-shape materials. Proc Natl Acad Sci USA 2006;103(48):18043–7
doi: 10.1073/pnas.0608586103
110   Ware T, Hearon K, Lonnecker A, Wooley KL, Maitland DJ, Voit W. Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 2012;45(2):1062–9
doi: 10.1021/ma202098s
111   Sun L, Huang WM. Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 2010;6:4403–6
doi: 10.1039/c0sm00236d
112   Teoh JEM, An J, Chua CK, Lv M, Krishnasamy V, Liu Y. Hierarchically self-morphing structure through 4D printing. Virtual Phys Prototyping 2017;12(1):61–8
doi: 10.1080/17452759.2016.1272174
113   Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 2016;6:31110
doi: 10.1038/srep31110
114   Choong YYC, Maleksaeedi S, Eng H, Su PC, Wei J. Curing characteristics of shape memory polymers in 3D projection and laser stereolithography. Virtual Phys Prototyping 2017;12(1):77–84
doi: 10.1080/17452759.2016.1254845
115   Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 2016;28(22):4449–54
doi: 10.1002/adma.201503132
116   Zarek M, Layani M, Eliazar S, Mansour N, Cooperstein I, Shukrun E, et al.4 D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual Phys Prototyping 2016;11(4):263–70
doi: 10.1080/17452759.2016.1244085
117   Miao S, Zhu W, Castro NJ, Nowicki M, Zhou X, Cui H, et al.4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep 2016;6:27226
doi: 10.1038/srep27226
118   An J, Chua CK, Mironov V. A perspective on 4D bioprinting. Int J Bioprint 2015;2(1):3–5.
119   Zhang Q, Yan D, Zhang K, Hu G. Pattern transformation of heat-shrinkable polymer by three-dimensional (3D) printing technique. Sci Rep 2015;5:8936
doi: 10.1038/srep08936
120   Le Duigou A, Castro M, Bevan R, Martin N. 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater Des 2016;96:106–14
doi: 10.1016/j.matdes.2016.02.018
121   Le Duigou A, Bourmaud A, Davies P, Baley C. Long term immersion in natural seawater of Flax/PLA biocomposite. Ocean Eng 2014;90:140–8
doi: 10.1016/j.oceaneng.2014.07.021
122   Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater 2016;15(4):413–8
doi: 10.1038/nmat4544
123   Armon S, Efrati E, Kupferman R, Sharon E. Geometry and mechanics in the opening of chiral seed pods. Science 2011;333(6050):1726–30
doi: 10.1126/science.1203874
124   Aharoni H, Sharon E, Kupferman R. Geometry of thin nematic elastomer sheets. Phys Rev Lett 2014;113(25):257801
doi: 10.1103/PhysRevLett.113.257801
125   Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML. Direct 4D printing via active composite materials. Sci Adv 2017;3(4):e1602890
doi: 10.1126/sciadv.1602890
126   Balk M, Behl M, Wischke C, Zotzmann J, Lendlein A. Recent advances in degradable lactide-based shape-memory polymers. Adv Drug Delivery Rev 2016;107:136–52
doi: 10.1016/j.addr.2016.05.012
127   Chen SJ, Hu JL, Zhuo HT, Zhu Y. Two-way shape memory effect in polymer laminates. Mater Lett 2008;62(25):4088–90
doi: 10.1016/j.matlet.2008.05.073
128   Chen SJ, Hu JL, Zhuo HT. Properties and mechanism of two-way shape memory polyurethane composites. Compos Sci Technol 2010;70(10):1437–43
doi: 10.1016/j.compscitech.2010.01.017
129   Tamagawa H. Thermo-responsive two-way shape changeable polymeric laminate. Mater Lett 2010;64(6):749–51
doi: 10.1016/j.matlet.2009.12.053
130   Westbrook KK, Mather PT, Parakh V, Dunn ML, Ge Q, Lee BM, et al.Two-way reversible shape memory effects in a free-standing polymer composite. Smart Mater Struct 2011;20(6):065010
doi: 10.1088/0964-1726/20/6/065010
131   Bai YK, Zhang XR, Wang QH, Wang TM. A tough shape memory polymer with triple-shape memory and two-way shape memory properties. J Mater Chem A 2014;2:4771–8
doi: 10.1039/c3ta15117d
132   Mao Y, Ding Z, Yuan C, Ai S, Isakov M, Wu J, et al.3D printed reversible shape changing components with stimuli responsive materials. Sci Rep 2016;6:24761
doi: 10.1038/srep24761
133   Naficy S, Gately R, Gorkin III R, Xin H, Spinks GM. 4D printing of reversible shape morphing hydrogel structures. Macromol Mater Eng 2016;302(1):1600212
doi: 10.1002/mame.201600212
134   Castro NJ, Meinert C, Levett P, Hutmacher DW. Current developments in multifunctional smart materials for 3D/4D bioprinting. Curr Opin Biomed Eng 2017;2:67–75
doi: 10.1016/j.cobme.2017.04.002
135   Kawai T, Matsuda T, inventors; JMSCo., Ltd., assignee. Plastic molded articles with shape memory property. European patent EP19890300839. 1994 Dec 21.
136   Brenner D, Lundberg RD, inventors; Exxon Research & Engineering Co., assignee. Elastomeric systems having unusual memory characteristics. United States patent US 05/855,567. 1980 Mar 18.
137   Froix M, inventor; Quanam Medical Corporation, assignee. Expandable polymeric stent with memory and delivery apparatus and method. United States patent US 09/177,917. 2011 Jun 19.
138   Froix M, inventor; Froix M, assignee. Method of using expandable polymeric stent with memory. United States patent US 07/874,181. 1993 Nov 2.
139   Schroeppel EA, Spehr PR, Machek JE, inventors; Intermedics Inc., assignee. Implantable cardiac lead with multiple shape memory polymer structures. United States patent US 09/025,164. 1999 Sep 28.
140   Kim BK, Lee SY, Xu M. Polyurethanes having shape memory effects. Polymer 1996;37(26):5781–93
doi: 10.1016/S0032-3861(96)00442-9
141   Liang C, Rogers CA, Malafeew E. Investigation of shape memory polymers and their hybrid composites. Journal of Intelligent Material Systems and Structures 1997;8(4):380–6
doi: 10.1177/1045389X9700800411
142   Chung T, Romo-Uribe A, Mather PT. Two-way reversible shape memory in a semicrystalline network. Macromolecules 2008;41(1):184–92
doi: 10.1021/ma071517z
143   Teoh JEM, Chua CK, Liu Y, An J. 4D printing of customised smart sunshade: A conceptual study. In: da Silva FM, Bártolo H, Bártolo P, Almendra R, Roseta F, Almeida HA, et al., editors Challenges for technology innovation: An agenda for the future. London: CRC Press; 2017. p. 105–8
doi: 10.1201/9781315198101-24
[1] Quy Bau Nguyen,Mui Ling Sharon Nai,Zhiguang Zhu,Chen-Nan Sun,Jun Wei,Wei Zhou. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing[J]. Engineering, 2017, 3(5): 695 -700 .
[2] Pinlian Han. Additive Design and Manufacturing of Jet Engine Parts[J]. Engineering, 2017, 3(5): 648 -652 .
[3] Patcharapit Promoppatum,Shi-Chune Yao,P. Chris Pistorius,Anthony D. Rollett. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion[J]. Engineering, 2017, 3(5): 685 -694 .
[4] Wentao Yan,Ya Qian,Weixin Ma,Bin Zhou,Yongxing Shen,Feng Lin. Modeling and Experimental Validation of the Electron Beam Selective Melting Process[J]. Engineering, 2017, 3(5): 701 -707 .
[5] Dongdong Gu,Chenglong Ma,Mujian Xia,Donghua Dai,Qimin Shi. A Multiscale Understanding of the Thermodynamic and Kinetic Mechanisms of Laser Additive Manufacturing[J]. Engineering, 2017, 3(5): 675 -684 .
[6] Zhen Zhang,Peng Yan,Guangbo Hao. A Large Range Flexure-Based Servo System Supporting Precision Additive Manufacturing[J]. Engineering, 2017, 3(5): 708 -715 .
[7] Anders Clausen, Niels Aage, Ole Sigmund. Exploiting Additive Manufacturing Infill in Topology Optimization for Improved Buckling Load[J]. Engineering, 2016, 2(2): 250 -257 .
[8] Jun Yang,Yang Yang,Zhizhu He,Bowei Chen,Jing Liu. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future[J]. Engineering, 2015, 1(4): 506 -512 .
[9] Jia An, Joanne Ee Mei Teoh, Ratima Suntornnond, Chee Kai Chua. Design and 3D Printing of Scaffolds and Tissues[J]. Engineering, 2015, 1(2): 261 -268 .
[10] Chao Guo, Wenjun Ge, Feng Lin. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies[J]. Engineering, 2015, 1(1): 124 -130 .
[11] Bingheng Lu, Dichen Li, Xiaoyong Tian. Development Trends in Additive Manufacturing and 3D Printing[J]. Engineering, 2015, 1(1): 85 -89 .
Copyright © 2015 Higher Education Press & Engineering Sciences Press, All Rights Reserved.
Today's visits ;Accumulated visits . 京ICP备11030251号-2